A Modified Fourier-Galerkin Method for the Poisson and Helmholtz Equations

被引:8
作者
Naess, Ole F. [1 ]
Eckhoff, Knut S. [1 ]
机构
[1] Univ Bergen, Dept Math, N-5008 Bergen, Norway
关键词
Fourier method; Poisson equation; Helmholtz equation; Gibbs phenomenon;
D O I
10.1023/A:1015162328151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a modified Fourier-Galerkin method for the numerical solution of the Poisson and Helmholtz equations in a d-dimensional box. The inversion of the differential operators requires O(N-d) operations, where Nd is the number of unknowns. The total cost of the presented algorithms is O(N-d log(2) N), due to the application of the Fast Fourier Transform (FFT) at the preprocessing stage. The method is based on an extension of the Fourier spaces by adding appropriate functions. Utilizing suitable bilinear forms, approximate projections onto these extended spaces give rapidly converging and highly accurate series expansions.
引用
收藏
页码:529 / 539
页数:11
相关论文
共 8 条
[1]   A fast Poisson solver of arbitrary order accuracy in rectangular regions [J].
Averbuch, A ;
Israeli, M ;
Vozovoi, L .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (03) :933-952
[2]   A fast spectral solver for a 3D Helmholtz equation [J].
Braverman, E ;
Israeli, M ;
Averbuch, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (06) :2237-2260
[3]   A fast 3D Poisson solver of arbitrary order accuracy [J].
Braverman, E ;
Israeli, M ;
Averbuch, A ;
Vozovoi, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 144 (01) :109-136
[4]   On a high order numerical method for functions with singularities [J].
Eckhoff, KS .
MATHEMATICS OF COMPUTATION, 1998, 67 (223) :1063-1087
[5]  
Gottlieb D., 1977, CBMS NSF REGIONAL C, V26
[6]  
Lanczos C., 1966, Discourse on Fourier Series
[7]  
LYNESS JN, 1974, MATH COMPUT, V28, P81, DOI 10.1090/S0025-5718-1974-0334458-6
[8]   FOURIER METHOD FOR NUMERICAL-SOLUTION OF POISSONS EQUATION [J].
SKOLLERMO, G .
MATHEMATICS OF COMPUTATION, 1975, 29 (131) :697-711