Localized waves in a parametrically driven magnetic nanowire

被引:23
作者
Clerc, M. G. [1 ]
Coulibaly, S. [2 ]
Laroze, D. [3 ,4 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, Santiago, Chile
[2] Univ Sci & Technol Lille, Ctr Etud & Rech Lasers & Applicat, CNRS UMR 8523, Lab Phys Lasers Atomes & Mol, F-59655 Villeneuve Dascq, France
[3] Max Planck Inst Polymer Res, D-55021 Mainz, Germany
[4] Univ Tarapaca, Inst Alta Invest, Arica, Chile
关键词
NONLINEAR SCHRODINGER-EQUATION; QUASI-REVERSIBLE SYSTEMS; DISSIPATIVE SOLITONS; INTERACTION LAW; SPIN DYNAMICS; BIFURCATION; INSTABILITY; PARTICLES; PATTERNS; STATES;
D O I
10.1209/0295-5075/97/30006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The pattern formation in a magnetic wire forced by a transversal uniform and oscillatory magnetic field is studied. This system is described in the continuous framework by the Landau-Lifshitz-Gilbert equation. We find numerically that, the spatio-temporal magnetization field exhibits a family of localized states that connect asymptotically a uniform oscillatory state with an extended wave. Close to parametrical resonance instability, an amended amplitude equation is derived, which allows us to understand and characterize these localized waves. Copyright (C) EPLA, 2012
引用
收藏
页数:6
相关论文
共 51 条
[1]   Fundamentals and Applications of Spatial Dissipative Solitons in Photonic Devices [J].
Ackemann, Thorsten ;
Firth, William J. ;
Oppo, Gian-Luca .
ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 57, 2009, 57 :323-421
[2]   Impurity-induced stabilization of solitons in arrays of parametrically driven nonlinear oscillators [J].
Alexeeva, NV ;
Barashenkov, IV ;
Tsironis, GP .
PHYSICAL REVIEW LETTERS, 2000, 84 (14) :3053-3056
[3]   Quasiperiodicity, bistability, and chaos in the Landau-Lifshitz equation [J].
Alvarez, LF ;
Pla, O ;
Chubykalo, O .
PHYSICAL REVIEW B, 2000, 61 (17) :11613-11617
[4]  
[Anonymous], 2008, Landau-Lifshitz Equations
[5]  
[Anonymous], 1983, GEOMETRICAL METHODS
[6]  
[Anonymous], 1965, In Collected Papers of Landau
[7]   Time-periodic solitons in a damped-driven nonlinear Schrodinger equation [J].
Barashenkov, I. V. ;
Zemlyanaya, E. V. ;
van Heerden, T. C. .
PHYSICAL REVIEW E, 2011, 83 (05)
[8]   Stable complexes of parametrically driven, damped nonlinear Schrodinger solitons [J].
Barashenkov, IV ;
Zemlyanaya, EV .
PHYSICAL REVIEW LETTERS, 1999, 83 (13) :2568-2571
[9]   Multistable pulselike solutions in a parametrically driven Ginzburg-Landau equation [J].
Barashenkov, IV ;
Cross, S ;
Malomed, BA .
PHYSICAL REVIEW E, 2003, 68 (05)
[10]   STABILITY DIAGRAM OF THE PHASE-LOCKED SOLITONS IN THE PARAMETRICALLY DRIVEN, DAMPED NONLINEAR SCHRODINGER-EQUATION [J].
BARASHENKOV, IV ;
BOGDAN, MM ;
KOROBOV, VI .
EUROPHYSICS LETTERS, 1991, 15 (02) :113-118