Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass

被引:274
|
作者
Pasangulapati, Vamsee [1 ]
Ramachandriya, Karthikeyan D. [1 ]
Kumar, Ajay [1 ]
Wilkins, Mark R. [1 ]
Jones, Carol L. [1 ]
Huhnke, Raymond L. [1 ]
机构
[1] Oklahoma State Univ, Dept Biosyst & Agr Eng, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
Thermochemical conversion; Gasification; Biomass; Weight loss; Gas evolution; AIR-STEAM GASIFICATION; THERMAL-DEGRADATION; LIGNOCELLULOSIC BIOMASS; EQUIVALENCE RATIO; DISTILLERS GRAINS; FAST PYROLYSIS; FLUIDIZED-BED; PARTICLE-SIZE; FUELS; COMPONENTS;
D O I
10.1016/j.biortech.2012.03.036
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The objective of this study was to investigate effects of biomass constituents (cellulose, hemicellulose and lignin) on biomass thermal decomposition and gas evolution profiles of four biomass materials. Switchgrass, wheat straw, eastern redcedar and dry distilled grains with solubles (DDGS) were selected as the biomass materials. No significant difference was observed in the weight loss profiles of switchgrass, wheat straw and eastern redcedar even though their cellulose, hemicellulose and lignin contents were considerably different. The weight loss kinetic parameters were also not significantly different except for activation energy of the eastern redcedar. However, biomass composition did significantly affect gas evolution profiles. The higher contents of cellulose and hemicellulose in switchgrass and wheat straw may have resulted in their higher CO and CO2 concentrations as compared to eastern redcedar. On the other hand, higher lignin content in eastern redcedar may have resulted in significantly its high CH4 concentration. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:663 / 669
页数:7
相关论文
共 50 条
  • [1] Characterization of Switchgrass, Cellulose, Hemicellulose and Lignin for Thermochemical Conversions
    Pasangulapati, Vamsee
    Kumar, Ajay
    Jones, Carol L.
    Huhnke, Raymond L.
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2012, 6 (03) : 249 - 258
  • [2] Effects of cellulose, hemicellulose and lignin on biomass pyrolysis kinetics
    Zhu, Lingli
    Zhong, Zhaoping
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 37 (10) : 1660 - 1668
  • [3] Effects of Fe addition on pyrolysis characteristics of lignin, cellulose and hemicellulose
    Ge, Lichao
    Zhao, Can
    Zuo, Mingjin
    Du, Yuying
    Tang, Jie
    Chu, Huaqiang
    Wang, Yang
    Xu, Chang
    JOURNAL OF THE ENERGY INSTITUTE, 2023, 107
  • [4] Cascade Utilization of Biomass: Strategy for Conversion of Cellulose, Hemicellulose, and Lignin into Useful Chemicals
    Yamaguchi, Aritomo
    Mimura, Naoki
    Shirai, Masayuki
    Sato, Osamu
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (12) : 10445 - 10451
  • [5] Lignocellulosic biomass to glycols: Simultaneous conversion of cellulose, hemicellulose and lignin using an organic solvent
    Di Sabatino, Romolo
    Kersten, Sascha R. A.
    Lange, Jean-Paul
    Ruiz, M. Pilar
    BIOMASS & BIOENERGY, 2024, 187
  • [6] A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin
    Stefanidis, Stylianos D.
    Kalogiannis, Konstantinos G.
    Iliopoulou, Eleni F.
    Michailof, Chrysoula M.
    Pilavachi, Petros A.
    Lappas, Angelos A.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2014, 105 : 143 - 150
  • [7] Catalytic gasification characteristics of cellulose, hemicellulose and lignin
    Yu, Haimiao
    Wu, Zilu
    Chen, Geng
    RENEWABLE ENERGY, 2018, 121 : 559 - 567
  • [8] Experimental study on the ignition characteristics of cellulose, hemicellulose, lignin and their mixtures
    Cao, Wenhan
    Li, Jun
    Marti-Rossello, Teresa
    Zhang, Xiaolei
    JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (05) : 1303 - 1312
  • [9] Pyrolytic characteristics of hemicellulose, cellulose and lignin under CO2 atmosphere
    Dong, Zhiguo
    Liu, Zihao
    Zhang, Xiong
    Yang, Haiping
    Li, Jian
    Xia, Sunwen
    Chen, Yingquan
    Chen, Hanping
    FUEL, 2019, 256
  • [10] Characteristics of tar formation during cellulose, hemicellulose and lignin gasification
    Yu, Haimiao
    Zhang, Ze
    Li, Zeshen
    Chen, Dezhen
    FUEL, 2014, 118 : 250 - 256