Real-Time Neuroimaging and Cognitive Monitoring Using Wearable Dry EEG

被引:510
作者
Mullen, Tim R. [1 ,2 ]
Kothe, Christian A. E. [1 ]
Chi, Yu Mike [3 ]
Ojeda, Alejandro [1 ]
Kerth, Trevor [3 ]
Makeig, Scott [1 ]
Jung, Tzyy-Ping [1 ]
Cauwenberghs, Gert [4 ,5 ]
机构
[1] Univ Calif San Diego, Swartz Ctr Computat Neurosci, Inst Neural Computat, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Cognit Sci, La Jolla, CA 92093 USA
[3] Cognionics Inc, San Diego, CA USA
[4] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Inst Neural Computat, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Adaptive systems; brain-computer interfaces (BCI); connectivity analysis; dry-contact electrode; electroencephalography (EEG); neuroimaging; wearable sensors; HIGH-RESOLUTION EEG; FUNCTIONAL CONNECTIVITY; BRAIN NETWORKS; DYNAMICS; ESTIMATORS; MECHANISMS; INTERFACES; CAUSALITY; THETA;
D O I
10.1109/TBME.2015.2481482
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Goal: We present and evaluate a wearable high-density dry-electrode EEG system and an open-source software framework for online neuroimaging and state classification. Methods: The system integrates a 64-channel dry EEG form factor with wireless data streaming for online analysis. A real-time software framework is applied, including adaptive artifact rejection, cortical source localization, multivariate effective connectivity inference, data visualization, and cognitive state classification from connectivity features using a constrained logistic regression approach (ProxConn). We evaluate the system identification methods on simulated 64-channel EEG data. Then, we evaluate system performance, using ProxConn and a benchmark ERP method, in classifying response errors in nine subjects using the dry EEG system. Results: Simulations yielded high accuracy (AUC = 0.97 +/- 0.021) for real-time cortical connectivity estimation. Response error classification using cortical effective connectivity [short-time direct-directed transfer function (sdDTF)] was significantly above chance with similar performance (AUC) for cLORETA (0.74 +/- 0.09) and LCMV (0.72 +/- 0.08) source localization. Cortical ERP-based classification was equivalent to ProxConn for cLORETA (0.74 +/- 0.16) but significantly better for LCMV (0.82 +/- 0.12). Conclusion: We demonstrated the feasibility for real-time cortical connectivity analysis and cognitive state classification from high-density wearable dry EEG. Significance: This paper is the first validated application of these methods to 64-channel dry EEG. This study addresses a need for robust real-time measurement and interpretation of complex brain activity in the dynamic environment of the wearable setting. Such advances can have broad impact in research, medicine, and brain-computer interfaces. The pipelines are made freely available in the open-source SIFT and BCILAB toolboxes.
引用
收藏
页码:2553 / 2567
页数:15
相关论文
共 71 条
[1]  
Akhtar M. T., 2012, 2012 IEEE International Symposium on Circuits and Systems - ISCAS 2012, P2813, DOI 10.1109/ISCAS.2012.6271896
[2]   Comparison of different cortical connectivity estimators for high-resolution EEG recordings [J].
Astolfi, Laura ;
Cincotti, Febo ;
Mattia, Donatella ;
Marciani, M. Grazia ;
Baccala, Luiz A. ;
Fallani, Fabrizio de Vico ;
Salinari, Serenella ;
Ursino, Mauro ;
Zavaglia, Melissa ;
Ding, Lei ;
Edgar, J. Christopher ;
Miller, Gregory A. ;
He, Bin ;
Babiloni, Fabio .
HUMAN BRAIN MAPPING, 2007, 28 (02) :143-157
[3]   Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function [J].
Babiloni, F ;
Cincotti, F ;
Babiloni, C ;
Carducci, F ;
Mattia, D ;
Astolfi, L ;
Basilisco, A ;
Rossini, PM ;
Ding, L ;
Ni, Y ;
Cheng, J ;
Christine, K ;
Sweeney, J ;
He, B .
NEUROIMAGE, 2005, 24 (01) :118-131
[4]   Partial directed coherence:: a new concept in neural structure determination [J].
Baccalá, LA ;
Sameshima, K .
BIOLOGICAL CYBERNETICS, 2001, 84 (06) :463-474
[5]   The PREP pipeline: standardized preprocessing for large-scale EEG analysis [J].
Bigdely-Shamlo, Nima ;
Mullen, Tim ;
Kothe, Christian ;
Su, Kyung-Min ;
Robbins, Kay A. .
FRONTIERS IN NEUROINFORMATICS, 2015, 9 :1-19
[6]   SCoT: a Python']Python toolbox for EEG source connectivity [J].
Billinger, Martin ;
Brunner, Clemens ;
Mueller-Putz, Gernot R. .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[7]   Single-trial connectivity estimation for classification of motor imagery data [J].
Billinger, Martin ;
Brunner, Clemens ;
Mueller-Putz, Gernot R. .
JOURNAL OF NEURAL ENGINEERING, 2013, 10 (04)
[8]  
Bishop Christopher, 2006, Pattern Recognition and Machine Learning, DOI 10.1117/1.2819119
[9]  
Boyd S., 2011, FOUND TRENDS MACH LE, V3, P1, DOI DOI 10.1561/2200000016
[10]   Closed-Loop Brain-Machine-Body Interfaces for Noninvasive Rehabilitation of Movement Disorders [J].
Broccard, Frederic D. ;
Mullen, Tim ;
Chi, Yu Mike ;
Peterson, David ;
Iversen, John R. ;
Arnold, Mike ;
Kreutz-Delgado, Kenneth ;
Jung, Tzyy-Ping ;
Makeig, Scott ;
Poizner, Howard ;
Sejnowski, Terrence ;
Cauwenberghs, Gert .
ANNALS OF BIOMEDICAL ENGINEERING, 2014, 42 (08) :1573-1593