The chemistry and energetics of the interface between metal halide perovskite and atomic layer deposited metal oxides

被引:15
作者
Bracesco, Andrea E. A. [1 ]
Burgess, Claire H. [1 ]
Todinova, Anna [1 ]
Zardetto, Valerio [2 ]
Koushik, Dibyashree [1 ]
Kessels, Wilhelmus M. M. [1 ]
Dogan, Ilker [2 ]
Weijtens, Christ H. L. [1 ]
Veenstra, Sjoerd [2 ]
Andriessen, Ronn [2 ]
Creatore, Mariadriana [1 ]
机构
[1] Eindhoven Univ Technol TUe, Dept Appl Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] TNO, High Tech Campus 21, NL-5656 AE Eindhoven, Netherlands
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2020年 / 38卷 / 06期
关键词
SOLAR-CELLS; OXYGEN VACANCIES; XPS ANALYSIS; TEMPERATURE; TRANSPORT; SNO2(110); AL2O3; TIO2; PASSIVATION; FILMS;
D O I
10.1116/6.0000447
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The chemistry of the interface between the metal halide perovskite absorber and the charge transport layer affects the performance and stability of metal halide perovskite solar cells (PSCs). The literature provides several examples of poor PSC conversion efficiency values, when electron transport layers (ETLs), such as SnO2 and TiO2, are processed by atomic layer deposition (ALD) directly on the perovskite absorber. In the present work, we shed light on the chemical modifications occurring at the perovskite surface, during ALD processing of SnO2 and TiO2, in parallel with the evaluation of the PSC cell performance. The ALD processes are carried out on a (Cs,FA)Pb(I,Br)(3) perovskite by adopting tetrakis(dimethylamino)tin(IV) and tetrakis(dimethylamino)titanium(IV) as metal precursors and H2O as the coreactant for SnO2 and TiO2, respectively. Perovskite surface modification occurs in the form of an ultrathin PbBr2 layer. Furthermore, in the case of SnO2, halogen molecules are detected at the interface, in parallel with the initial growth of an oxygen-deficient SnO2. Subgap defect states just above the valence band maximum of SnO2 are also detected. These states act as hole traps at the perovskite/SnO2 interface, subsequently promoting charge recombination and deteriorating the performance of the cell. We hypothesize that a redox reaction between the perovskite, or its decomposition products, and the Sn metal center of the ALD precursor takes place: I- and Br- are oxidized to I-2 and Br-2, respectively, and Sn(IV) is reduced to Sn(II). In contrast, the Ti(IV) metal center does not undergo any redox process, and, as a result, a promising 11% power conversion efficiency is measured with TiO2 as the ETL. This result strongly suggests that TiO2 may be a more suitable ETL, when processed directly on the perovskite absorber.
引用
收藏
页数:13
相关论文
共 50 条
[31]   Effect of wettability of substrate on metal halide perovskite growth [J].
Pylnev, Mikhail ;
Barbisan, Ana Maria ;
Wei, Tzu-Chien .
APPLIED SURFACE SCIENCE, 2021, 541
[32]   Atomic layer deposited ultrathin metal nitride barrier layers for ruthenium interconnect applications [J].
Dey, Sonal ;
Yu, Kai-Hung ;
Consiglio, Steven ;
Tapily, Kandabara ;
Hakamata, Takahiro ;
Wajda, Cory S. ;
Leusink, Gert J. ;
Jordan-Sweet, Jean ;
Lavoie, Christian ;
Muir, David ;
Moreno, Beatriz ;
Diebold, Alain C. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2017, 35 (03)
[33]   Perovskite Metal-Oxide-Semiconductor Structures for Interface Characterization [J].
Cunha, Jose M. V. ;
Barreiros, M. Alexandra ;
Curado, Marco A. ;
Lopes, Tomas S. ;
Oliveira, Kevin ;
Oliveira, Antonio J. N. ;
Barbosa, Joao R. S. ;
Vilanova, Antonio ;
Brites, Maria Joao ;
Mascarenhas, Joao ;
Flandre, Denis ;
Silva, Ana G. ;
Fernandes, Paulo A. ;
Salome, Pedro M. P. .
ADVANCED MATERIALS INTERFACES, 2021, 8 (20)
[34]   Techno-economic analysis of the use of atomic layer deposited transition metal oxides in silicon heterojunction solar cells [J].
Chang, Nathan L. ;
Poduval, Geedhika K. ;
Sang, Borong ;
Khoo, Kean ;
Woodhouse, Michael ;
Qi, Fred ;
Dehghanimadvar, Mohammad ;
Li, Wei Min ;
Egan, Renate J. ;
Hoex, Bram .
PROGRESS IN PHOTOVOLTAICS, 2023, 31 (04) :414-428
[35]   Atomic Layer Deposition of Metal Oxides and Chalcogenides for High Performance Transistors [J].
Shen, Chengxu ;
Yin, Zhigang ;
Collins, Fionn ;
Pinna, Nicola .
ADVANCED SCIENCE, 2022, 9 (23)
[36]   Fluid Chemistry of Metal Halide Perovskites [J].
Chen, Changshun ;
Yao, Qing ;
Wang, Jinpei ;
Ran, Chenxin ;
Chao, Lingfeng ;
Xia, Yingdong ;
Chen, Yonghua .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (23)
[37]   Efficient Metal-Halide Perovskite Photovoltaic Cells Deposited via Vapor Transport Deposition [J].
Hsu, Wan-Ju ;
Pettit, Emma C. ;
Swartwout, Richard ;
Kadosh, Tamar Zhitomirsky ;
Srinivasan, Shreyas ;
Wassweiler, Ella L. ;
Haugstad, Greg ;
Bulovic, Vladimir ;
Holmes, Russell J. .
SOLAR RRL, 2024, 8 (01)
[38]   Photo-induced degradation of lead halide perovskite solar cells caused by the hole transport layer/metal electrode interface [J].
Wei, Dong ;
Wang, Tianyue ;
Ji, Jun ;
Li, Meicheng ;
Cui, Peng ;
Li, Yaoyao ;
Li, Guanying ;
Mbengue, Joseph Michel ;
Song, Dandan .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (05) :1991-1998
[39]   Application of Metal Halide Perovskite in Internet of Things [J].
Chai, Zhihao ;
Lin, Hui ;
Bai, Hang ;
Huang, Yixiang ;
Guan, Zhen ;
Liu, Fangze ;
Wei, Jing .
MICROMACHINES, 2024, 15 (09)
[40]   Metal Halide Perovskite Based Heterojunction Photocatalysts [J].
Huang, Haowei ;
Verhaeghe, Davy ;
Weng, Bo ;
Ghosh, Biplab ;
Zhang, Hongwen ;
Hofkens, Johan ;
Steele, Julian A. ;
Roeffaers, Maarten B. J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (24)