The chemistry and energetics of the interface between metal halide perovskite and atomic layer deposited metal oxides

被引:15
作者
Bracesco, Andrea E. A. [1 ]
Burgess, Claire H. [1 ]
Todinova, Anna [1 ]
Zardetto, Valerio [2 ]
Koushik, Dibyashree [1 ]
Kessels, Wilhelmus M. M. [1 ]
Dogan, Ilker [2 ]
Weijtens, Christ H. L. [1 ]
Veenstra, Sjoerd [2 ]
Andriessen, Ronn [2 ]
Creatore, Mariadriana [1 ]
机构
[1] Eindhoven Univ Technol TUe, Dept Appl Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] TNO, High Tech Campus 21, NL-5656 AE Eindhoven, Netherlands
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2020年 / 38卷 / 06期
关键词
SOLAR-CELLS; OXYGEN VACANCIES; XPS ANALYSIS; TEMPERATURE; TRANSPORT; SNO2(110); AL2O3; TIO2; PASSIVATION; FILMS;
D O I
10.1116/6.0000447
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The chemistry of the interface between the metal halide perovskite absorber and the charge transport layer affects the performance and stability of metal halide perovskite solar cells (PSCs). The literature provides several examples of poor PSC conversion efficiency values, when electron transport layers (ETLs), such as SnO2 and TiO2, are processed by atomic layer deposition (ALD) directly on the perovskite absorber. In the present work, we shed light on the chemical modifications occurring at the perovskite surface, during ALD processing of SnO2 and TiO2, in parallel with the evaluation of the PSC cell performance. The ALD processes are carried out on a (Cs,FA)Pb(I,Br)(3) perovskite by adopting tetrakis(dimethylamino)tin(IV) and tetrakis(dimethylamino)titanium(IV) as metal precursors and H2O as the coreactant for SnO2 and TiO2, respectively. Perovskite surface modification occurs in the form of an ultrathin PbBr2 layer. Furthermore, in the case of SnO2, halogen molecules are detected at the interface, in parallel with the initial growth of an oxygen-deficient SnO2. Subgap defect states just above the valence band maximum of SnO2 are also detected. These states act as hole traps at the perovskite/SnO2 interface, subsequently promoting charge recombination and deteriorating the performance of the cell. We hypothesize that a redox reaction between the perovskite, or its decomposition products, and the Sn metal center of the ALD precursor takes place: I- and Br- are oxidized to I-2 and Br-2, respectively, and Sn(IV) is reduced to Sn(II). In contrast, the Ti(IV) metal center does not undergo any redox process, and, as a result, a promising 11% power conversion efficiency is measured with TiO2 as the ETL. This result strongly suggests that TiO2 may be a more suitable ETL, when processed directly on the perovskite absorber.
引用
收藏
页数:13
相关论文
共 71 条
[61]   The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells [J].
Stolterfoht, Martin ;
Caprioglio, Pietro ;
Wolff, Christian M. ;
Marquez, Jose A. ;
Nordmann, Joleik ;
Zhang, Shanshan ;
Rothhardt, Daniel ;
Hoermann, Ulrich ;
Amir, Yohai ;
Redinger, Alex ;
Kegelmann, Lukas ;
Zu, Fengshuo ;
Albrecht, Steve ;
Koch, Norbert ;
Kirchartz, Thomas ;
Saliba, Michael ;
Unold, Thomas ;
Neher, Dieter .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (09) :2778-2788
[62]   Interfacing Low-Temperature Atomic Layer Deposited TiO2 Electron Transport Layers with Metal Electrodes [J].
Tan, Wanliang ;
Bowring, Andrea R. ;
Babadi, Aein S. ;
Meng, Andrew C. ;
Tang-Kong, Robert ;
McGehee, Michael D. ;
McIntyre, Paul C. .
ADVANCED MATERIALS INTERFACES, 2020, 7 (08)
[63]   Absolute energy level positions in tin-and lead-based halide perovskites [J].
Tao, Shuxia ;
Schmidt, Ines ;
Brocks, Geert ;
Jiang, Junke ;
Tranca, Ionut ;
Meerholz, Klaus ;
Olthof, Selina .
NATURE COMMUNICATIONS, 2019, 10 (1)
[64]  
The Lancet, 2020, LANCET PLANET HEALTH, V4, pe168, DOI DOI 10.1002/SOLR.201900332
[65]   Lone-Pair Stabilization in Transparent Amorphous Tin Oxides: A Potential Route to p-Type Conduction Pathways [J].
Wahila, Matthew J. ;
Butler, Keith T. ;
Lebens-Higgins, Zachary W. ;
Hendon, Christopher H. ;
Nandur, Abhishek S. ;
Treharne, Robert E. ;
Quackenbush, Nicholas F. ;
Sallis, Shawn ;
Mason, Katie ;
Paik, Hanjong ;
Schlom, Darrell G. ;
Woicik, Joseph C. ;
Guo, Jinghua ;
Arena, Dario A. ;
White, Bruce E., Jr. ;
Watson, Graeme W. ;
Walsh, Aron ;
Piper, Louis F. J. .
CHEMISTRY OF MATERIALS, 2016, 28 (13) :4706-4713
[66]   Energy Level Alignment at Interfaces in Metal Halide Perovskite Solar Cells [J].
Wang, Shenghao ;
Sakurai, Takeaki ;
Wen, Weijia ;
Qi, Yabing .
ADVANCED MATERIALS INTERFACES, 2018, 5 (22)
[67]   A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells [J].
Wu, Shaohang ;
Chen, Rui ;
Zhang, Shasha ;
Babu, B. Hari ;
Yue, Youfeng ;
Zhu, Hongmei ;
Yang, Zhichun ;
Chen, Chuanliang ;
Chen, Weitao ;
Huang, Yuqian ;
Fang, Shaoying ;
Liu, Tianlun ;
Han, Liyuan ;
Chen, Wei .
NATURE COMMUNICATIONS, 2019, 10 (1)
[68]   Reaction Temperature and Partial Pressure Induced Etching of Methylammonium Lead Iodide Perovskite by Trimethylaluminum [J].
Yu, Xiaozhou ;
Yan, Haoming ;
Peng, Qing .
LANGMUIR, 2019, 35 (20) :6522-6531
[69]   Improve the Stability of Hybrid Halide Perovskite via Atomic Layer Deposition on Activated Phenyl-C61 Butyric Acid Methyl Ester [J].
Yu, Xiaozhou ;
Yan, Haoming ;
Peng, Qing .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (34) :28948-28954
[70]   Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges [J].
Zardetto, V. ;
Williams, B. L. ;
Perrotta, A. ;
Di Giacomo, F. ;
Verheijen, M. A. ;
Andriessen, R. ;
Kessels, W. M. M. ;
Creatore, M. .
SUSTAINABLE ENERGY & FUELS, 2017, 1 (01) :30-55