The chemistry and energetics of the interface between metal halide perovskite and atomic layer deposited metal oxides

被引:14
|
作者
Bracesco, Andrea E. A. [1 ]
Burgess, Claire H. [1 ]
Todinova, Anna [1 ]
Zardetto, Valerio [2 ]
Koushik, Dibyashree [1 ]
Kessels, Wilhelmus M. M. [1 ]
Dogan, Ilker [2 ]
Weijtens, Christ H. L. [1 ]
Veenstra, Sjoerd [2 ]
Andriessen, Ronn [2 ]
Creatore, Mariadriana [1 ]
机构
[1] Eindhoven Univ Technol TUe, Dept Appl Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] TNO, High Tech Campus 21, NL-5656 AE Eindhoven, Netherlands
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2020年 / 38卷 / 06期
关键词
SOLAR-CELLS; OXYGEN VACANCIES; XPS ANALYSIS; TEMPERATURE; TRANSPORT; SNO2(110); AL2O3; TIO2; PASSIVATION; FILMS;
D O I
10.1116/6.0000447
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The chemistry of the interface between the metal halide perovskite absorber and the charge transport layer affects the performance and stability of metal halide perovskite solar cells (PSCs). The literature provides several examples of poor PSC conversion efficiency values, when electron transport layers (ETLs), such as SnO2 and TiO2, are processed by atomic layer deposition (ALD) directly on the perovskite absorber. In the present work, we shed light on the chemical modifications occurring at the perovskite surface, during ALD processing of SnO2 and TiO2, in parallel with the evaluation of the PSC cell performance. The ALD processes are carried out on a (Cs,FA)Pb(I,Br)(3) perovskite by adopting tetrakis(dimethylamino)tin(IV) and tetrakis(dimethylamino)titanium(IV) as metal precursors and H2O as the coreactant for SnO2 and TiO2, respectively. Perovskite surface modification occurs in the form of an ultrathin PbBr2 layer. Furthermore, in the case of SnO2, halogen molecules are detected at the interface, in parallel with the initial growth of an oxygen-deficient SnO2. Subgap defect states just above the valence band maximum of SnO2 are also detected. These states act as hole traps at the perovskite/SnO2 interface, subsequently promoting charge recombination and deteriorating the performance of the cell. We hypothesize that a redox reaction between the perovskite, or its decomposition products, and the Sn metal center of the ALD precursor takes place: I- and Br- are oxidized to I-2 and Br-2, respectively, and Sn(IV) is reduced to Sn(II). In contrast, the Ti(IV) metal center does not undergo any redox process, and, as a result, a promising 11% power conversion efficiency is measured with TiO2 as the ETL. This result strongly suggests that TiO2 may be a more suitable ETL, when processed directly on the perovskite absorber.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Interfacial Effects of Tin Oxide Atomic Layer Deposition in Metal Halide Perovskite Photovoltaics
    Palmstrom, Axel F.
    Raiford, James A.
    Prasanna, Rohit
    Bush, Kevin A.
    Sponseller, Melany
    Cheacharoen, Rongrong
    Minichetti, Maxmillian C.
    Bergsman, David S.
    Leijtens, Tomas
    Wang, Hsin-Ping
    Bulovic, Vladimir
    McGehee, Michael D.
    Bent, Stacey F.
    ADVANCED ENERGY MATERIALS, 2018, 8 (23)
  • [2] Atomic-scale microstructure of metal halide perovskite
    Rothmann, Mathias Uller
    Kim, Judy S.
    Borchert, Juliane
    Lohmann, Kilian B.
    O'Leary, Colum M.
    Sheader, Alex A.
    Clark, Laura
    Snaith, Henry J.
    Johnston, Michael B.
    Nellist, Peter D.
    Herz, Laura M.
    SCIENCE, 2020, 370 (6516) : 548 - +
  • [3] Recent Advances in Energetics of Metal Halide Perovskite Interfaces
    Ou, Qing-Dong
    Li, Chi
    Wang, Qian-Kun
    Li, Yan-Qing
    Tang, Jian-Xin
    ADVANCED MATERIALS INTERFACES, 2017, 4 (02):
  • [4] Materials chemistry for metal halide perovskite photovoltaics
    Nakamura, Tomoya
    Kondo, Yoshio
    Ohashi, Noboru
    Sakamoto, Chihiro
    Hasegawa, Akio
    Hu, Shuaifeng
    Truong, Minh Anh
    Murdey, Richard
    Kanemitsu, Yoshihiko
    Wakamiya, Atsushi
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2024, 97 (03)
  • [5] Kinetics and energetics of metal halide perovskite conversion reactions at the nanoscale
    Arora, Neha
    Greco, Alessandro
    Meloni, Simone
    Hinderhofer, Alexander
    Mattoni, Alessandro
    Rothlisberger, Ursula
    Hagenlocher, Jan
    Caddeo, Claudia
    Zakeeruddin, Shaik M.
    Schreiber, Frank
    Graetzel, Michael
    Friend, Richard H.
    Dar, M. Ibrahim
    COMMUNICATIONS MATERIALS, 2022, 3 (01)
  • [6] Atomic Layer Deposition of Metal Oxides in Perovskite Solar Cells: Present and Future
    Xing, Zhi
    Xiao, Junjun
    Hu, Ting
    Meng, Xiangchuan
    Li, Dengxue
    Hu, Xiaotian
    Chen, Yiwang
    SMALL METHODS, 2020, 4 (12)
  • [7] Interface defect formation for atomic layer deposition of SnO 2 on metal halide perovskites
    Mallik, Nitin
    Hajhemati, Javid
    Fregnaux, Mathieu
    Coutancier, Damien
    Toby, Ashish
    Zhang, Shan-Ting
    Hartmann, Claudia
    Huesam, Elif
    Saleh, Ahmed
    Vincent, Thomas
    Fournier, Olivier
    Wilks, Regan G.
    Aureau, Damien
    Felix, Roberto
    Schneider, Nathanaelle
    Baer, Marcus
    Schulz, Philip
    NANO ENERGY, 2024, 126
  • [8] Metal Halide Perovskite Surfaces with Mixed A-Site Cations: Atomic Structure and Device Stability
    Hieulle, Jeremy
    Son, Dae-Yong
    Jamshaid, Afshan
    Meng, Xin
    Stecker, Collin
    Ohmann, Robin
    Liu, Zonghao
    Ono, Luis K.
    Qi, Yabing
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (09)
  • [9] Perspective: Atomic Layer Deposition Strategies for Surface Passivation of Metal-Halide Perovskite Absorbers
    George Kwesi Asare
    Joshua Sraku Adu
    Byungha Shin
    David J. Fermin
    Helen Hejin Park
    Electronic Materials Letters, 2025, 21 (3) : 331 - 336
  • [10] Tailoring the Surface of Metal Halide Perovskites to Enable the Atomic Layer Deposition of Metal Oxide Contacts
    Raiford, James A.
    Chosy, Cullen
    Reeves, Benjamin A.
    Bent, Stacey F.
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (09): : 9871 - 9880