Existence and uniqueness of symmetric solutions for fractional differential equations with multi-order fractional integral conditions

被引:9
作者
Aphithana, Aphirak [1 ]
Ntouyas, Sotiris K. [2 ,3 ]
Tariboon, Jessada [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Sci Appl, Nonlinear Dynam Anal Res Ctr, Dept Math, Bangkok 10800, Thailand
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[3] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, Jeddah 21589, Saudi Arabia
来源
BOUNDARY VALUE PROBLEMS | 2015年
关键词
fractional differential equations; boundary value problems; symmetric solutions; fixed point theorems; existence; uniqueness; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS;
D O I
10.1186/s13661-015-0329-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence and uniqueness of symmetric solutions for fractional differential equations with multi-order fractional integral boundary conditions, by means of standard fixed point theorems. Examples which support our theoretical results are also presented.
引用
收藏
页数:14
相关论文
共 24 条
[1]   Existence of fractional neutral functional differential equations [J].
Agarwal, R. P. ;
Zhou, Yong ;
He, Yunyun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) :1095-1100
[2]  
AHMAD B, 2013, J FUNCT SPACE APPL
[3]   NONLOCAL FRACTIONAL BOUNDARY VALUE PROBLEMS WITH SLIT-STRIPS BOUNDARY CONDITIONS [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (01) :261-280
[4]   New Existence Results for Nonlinear Fractional Differential Equations with Three-Point Integral Boundary Conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Alsaedi, Ahmed .
ADVANCES IN DIFFERENCE EQUATIONS, 2011,
[5]   A Study of Nonlinear Fractional Differential Equations of Arbitrary Order with Riemann-Liouville Type Multistrip Boundary Conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Alsaedi, Ahmed .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
[6]   Fractional differential inclusions with fractional separated boundary conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (03) :362-382
[7]   Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions [J].
Ahmad, Bashir ;
Nieto, Juan J. .
BOUNDARY VALUE PROBLEMS, 2011, :1-9
[8]  
[Anonymous], 1955, Uspekhi Matematicheskikh Nauk
[9]   ON NONLINEAR CONTRACTIONS [J].
BOYD, DW ;
WONG, JSW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) :458-&
[10]   Nonlinear multi-order fractional differential equations with periodic/anti-periodic boundary conditions [J].
Choudhary, Sangita ;
Daftardar-Gejji, Varsha .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) :333-347