Analytical approach to the time-dependent probability density function in tilted periodic potentials

被引:5
作者
Salgado-Garcia, R. [1 ,2 ]
Leyvraz, F. [2 ]
Martinez-Mekler, G. [2 ]
机构
[1] Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 06期
关键词
Brownian motion; diffusion; Fokker-Planck equation; probability;
D O I
10.1103/PhysRevE.78.061101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work we introduce a scheme for the calculation of an approximate closed expression for the time-dependent probability density function for overdamped particles in tilted periodic potentials. Our derivation is based on an ansatz for the solution of the corresponding Fokker-Planck equation and on a self-consistent cumulant calculation. The high accuracy of our expression for the time-dependent probability density function is exhibited by comparisons with Langevin dynamics simulations and exact analytic results for the drift and diffusion coefficients. Good agreement is found both, for large and intermediate times.
引用
收藏
页数:16
相关论文
共 16 条
[1]   DIFFUSION-COEFFICIENT FOR A BROWNIAN PARTICLE IN A PERIODIC FIELD OF FORCE .1. LARGE FRICTION LIMIT [J].
FESTA, R ;
DAGLIANO, EG .
PHYSICA A, 1978, 90 (02) :229-244
[2]   DYNAMICAL ENSEMBLES IN NONEQUILIBRIUM STATISTICAL-MECHANICS [J].
GALLAVOTTI, G ;
COHEN, EGD .
PHYSICAL REVIEW LETTERS, 1995, 74 (14) :2694-2697
[3]   Test of the fluctuation theorem for stochastic entropy production in a nonequilibrium steady state [J].
Gomez-Marin, A. ;
Pagonabarraga, I. .
PHYSICAL REVIEW E, 2006, 74 (06)
[4]   Equality connecting energy dissipation with a violation of the fluctuation-response relation [J].
Harada, T ;
Sasa, S .
PHYSICAL REVIEW LETTERS, 2005, 95 (13)
[5]   Steady-state thermodynamics of Langevin systems [J].
Hatano, T ;
Sasa, S .
PHYSICAL REVIEW LETTERS, 2001, 86 (16) :3463-3466
[6]  
Hayashi K, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.066119
[7]   Nonequilibrium equality for free energy differences [J].
Jarzynski, C .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2690-2693
[8]   Optimal diffusive transport in a tilted periodic potential [J].
Lindner, B ;
Kostur, M ;
Schimansky-Geier, L .
FLUCTUATION AND NOISE LETTERS, 2001, 1 (01) :R25-R39
[9]   Kramers theory in the relaxation dynamics of a tilted asymmetric periodic potential [J].
Monnai, Takaaki ;
Sugita, Ayumu ;
Nakamura, Katsuhiro .
PHYSICAL REVIEW E, 2007, 76 (03)
[10]   Diffusion in tilted periodic potentials:: Enhancement, universality, and scaling -: art. no. 031104 [J].
Reimann, P ;
Van den Broeck, C ;
Linke, H ;
Hänggi, P ;
Rubi, JM ;
Pérez-Madrid, A .
PHYSICAL REVIEW E, 2002, 65 (03) :1-031104