Geometric classifications of homogeneous production functions

被引:25
作者
Chen, Bang-Yen [1 ]
Vilcu, Gabriel Eduard [2 ,3 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Univ Bucharest, Res Ctr Geometry Topol & Algebra, Bucharest 70109, Romania
[3] Petr Gas Univ Ploiesti, Dept Math Modelling Econ Anal & Stat, Ploiesti 100680, Romania
关键词
Gauss-Kronecker curvature; Developable surface; Production function; Production hypersurface; Return to scale; Flat hypersurface; PRODUCTION POSSIBILITY FRONTIER; SUBSTITUTION; SURFACES;
D O I
10.1016/j.amc.2013.09.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we completely classify homogeneous production functions with an arbitrary number of inputs whose production hypersurfaces are flat. As an immediate consequence, we obtain a complete classification of homogeneous production functions with two inputs whose production surfaces are developable. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:345 / 351
页数:7
相关论文
共 36 条
[11]  
Chen BY, 2012, INT ELECTRON J GEOM, V5, P67
[12]  
Chen BY, 2011, KRAGUJEV J MATH, V35, P343
[13]   On some geometric properties of quasi-sum production models [J].
Chen, Bang-Yen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 392 (02) :192-199
[14]  
Cobb C., 1928, AM ECON REV, V18, P139, DOI DOI 10.2307/1811556
[15]  
Do Carmo M.P., 2016, Differential Geometry of Curves and Surfaces: Revised and Updated, V2nd
[16]  
FUSS M, 1978, SURVEY FUNCTIONAL FO
[17]   ON SPHERICAL IMAGE MAPS WHOSE JACOBIANS DO NOT CHANGE SIGN [J].
HARTMAN, P ;
NIRENBERG, L .
AMERICAN JOURNAL OF MATHEMATICS, 1959, 81 (04) :901-920
[19]  
Klingenberg W., 1978, A course in differential geometry, V51
[20]  
Massey William S., 1962, Tohoku Math. J., V14, P73, DOI DOI 10.2748/TMJ/1178244205