Geometric classifications of homogeneous production functions

被引:25
作者
Chen, Bang-Yen [1 ]
Vilcu, Gabriel Eduard [2 ,3 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Univ Bucharest, Res Ctr Geometry Topol & Algebra, Bucharest 70109, Romania
[3] Petr Gas Univ Ploiesti, Dept Math Modelling Econ Anal & Stat, Ploiesti 100680, Romania
关键词
Gauss-Kronecker curvature; Developable surface; Production function; Production hypersurface; Return to scale; Flat hypersurface; PRODUCTION POSSIBILITY FRONTIER; SUBSTITUTION; SURFACES;
D O I
10.1016/j.amc.2013.09.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we completely classify homogeneous production functions with an arbitrary number of inputs whose production hypersurfaces are flat. As an immediate consequence, we obtain a complete classification of homogeneous production functions with two inputs whose production surfaces are developable. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:345 / 351
页数:7
相关论文
共 36 条
[1]   A NOTE ON THE PRODUCTION POSSIBILITY FRONTIER WITH PURE PUBLIC INTERMEDIATE GOODS [J].
ABE, K ;
OKAMOTO, H ;
TAWADA, M .
CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 1986, 19 (02) :351-356
[2]  
[Anonymous], 1962, PARTIAL DIFFERENTIAL
[3]  
[Anonymous], MICHIGAN MATH J
[4]   CAPITAL-LABOR SUBSTITUTION AND ECONOMIC-EFFICIENCY [J].
ARROW, KJ ;
CHENERY, HB ;
MINHAS, BS ;
SOLOW, RM .
REVIEW OF ECONOMICS AND STATISTICS, 1961, 43 (03) :225-250
[5]  
Bozhkov Y., 2009, PROGR NONLINEAR ANAL, P61
[6]  
BRICKELL F, 1967, J LOND MATH SOC, V42, P325
[7]  
Chen B.Y., 2012, J. Adv. Math. Stud., V5, P90
[8]  
Chen B.-Y., 1973, PURE APPL MATH, V22
[9]  
Chen B.-Y., 2011, Pseudo-Riemannian geometry, -invariants and applications
[10]  
Chen BY, 2012, KRAGUJEV J MATH, V36, P41