Perturbations of nonsmooth symmetric nonlinear eigenvalue problems

被引:15
作者
Degiovanni, M
Radulescu, V
机构
[1] Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis, I-25121 Brescia, Italy
[2] Univ Craiova, Dept Math, Craiova 1100, Romania
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 329卷 / 04期
关键词
D O I
10.1016/S0764-4442(00)88567-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a symmetric semilinear boundary value problem having infinitely many solutions. We prove that, if we perturb this problem in a non-symmetric way, then the number of solutions goes to infinity as the perturbation tends to zero. The growth conditions on the nonlinearities do not ensure the smoothness of the associated functional. (C) 1999 Academie des Sciences / Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:281 / 286
页数:6
相关论文
共 9 条
  • [1] [Anonymous], 1993, TOPOL METHOD NONL AN, DOI DOI 10.12775/TMNA.1993.012
  • [2] CAMPA I, 1997, QUADERNI SEM MAT BRE, V15
  • [3] CANINO A, 1995, NATO ASI SER C-MATH, V472, P1
  • [4] A CRITICAL-POINT THEORY FOR NONSMOOTH FUNCTIONALS
    DEGIOVANNI, M
    MARZOCCHI, M
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1994, 167 : 73 - 100
  • [5] Degiovanni M., 1995, DIFFERENTIAL INTEGRA, V8, P981
  • [6] DEGIOVANNI M, IN PRESS ADV TOPICS
  • [7] Krasnoselskii M., 1964, TOPOLOGICAL METHODS
  • [8] Rabinowitz P.H, 1986, CBMS REGIONAL C SERI, V65
  • [9] Struwe M., 1990, Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems, DOI DOI 10.1007/978-3-662-02624-3