Robust active shock control bump design optimisation using hybrid parallel MOGA

被引:6
作者
Lee, D. S. [1 ,3 ]
Bugeda, G. [1 ,2 ]
Periaux, J. [1 ,2 ]
Onate, E. [1 ,2 ]
机构
[1] CIMNE, Barcelona 08034, Spain
[2] Univ Politecn Cataluna, ES-08034 Barcelona, Spain
[3] Deloitte Analyt Deloitte Consulting LLC, Seoul, South Korea
关键词
Robust/uncertainty design; Multi-objective evolutionary algorithms; Game strategies; Parallel computation; Computational fluid dynamics; Shock control bump; EVOLUTIONARY ALGORITHMS;
D O I
10.1016/j.compfluid.2012.03.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper investigates a robust optimisation for detail design of active shock control bump on a transonic Natural Laminar Flow (NLF) aerofoil using a Multi-Objective Evolutionary Algorithm (MOEA) coupled to Computational Fluid Dynamics (CFDs) software. For MOEA, Robust Multi-Objective Optimisation Platform (RMOP) developed at CIMNE is used. For the active shock control bump design, two different optimisation methods are considered; the first method is a Pareto-Game based Genetic Algorithm in RMOP (denoted as RMOGA). The second method uses a Hybridised RMOGA with Game-Strategies and a parallel computation for high performance computation. Numerical results show not only how the concept of Shock Control Bump (SCB) coupled to CFD can improve aerodynamic performance of classic transonic aerofoil at the variability of flight conditions but also how high performance (parallel/distributed) computation with applying Hybrid-Game increases the efficiency of optimisation in terms of computational cost and results accuracy. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:214 / 224
页数:11
相关论文
共 19 条
[1]  
[Anonymous], 1980, LATIN HYPERCUBE SAMP
[2]  
[Anonymous], 2003, Multi-objective optimization using evolutionary algorithms
[3]  
Ashill P., 1992, P 1 EUR FOR LAM FLOW, P175
[4]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[5]  
Drela M., 1996, A User's Guide to MSES 2.95
[6]  
Kennedy J., 1995, 1995 IEEE International Conference on Neural Networks Proceedings (Cat. No.95CH35828), P1942, DOI 10.1109/ICNN.1995.488968
[7]   Robust design optimisation using multi-objective evolutionary algorithms [J].
Lee, D. S. ;
Gonzalez, L. F. ;
Periaux, J. ;
Srinivas, K. .
COMPUTERS & FLUIDS, 2008, 37 (05) :565-583
[8]   Robust evolutionary algorithms for UAV/UCAV aerodynamic and RCS design optimisation [J].
Lee, D. S. ;
Gonzalez, L. F. ;
Srinivas, K. ;
Periaux, J. .
COMPUTERS & FLUIDS, 2008, 37 (05) :547-564
[9]   Efficient Hybrid-Game Strategies Coupled to Evolutionary Algorithms for Robust Multidisciplinary Design Optimization in Aerospace Engineering [J].
Lee, D. S. ;
Gonzalez, L. F. ;
Periaux, J. ;
Srinivas, K. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (02) :133-150
[10]   UAS Mission Path Planning System (MPPS) Using Hybrid-Game Coupled to Multi-Objective Optimizer [J].
Lee, DongSeop ;
Periaux, Jacques ;
Felipe Gonzalez, Luis .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2010, 132 (04) :1-11