Investigation of Low-Pressure Glow Discharge in a Coaxial Gridded Hollow Cathode

被引:16
作者
Liang, Yonggan [1 ]
Yuan, Chengxun [1 ]
Gao, Ruilin [1 ]
Jia, Jieshu [1 ]
Kirsanov, Gennady [2 ]
Bekasov, Vladimir [2 ]
Marin, Alexander [2 ]
Kudryavtsev, Anatoly [2 ,3 ]
Eliseev, Stepan [3 ]
Zhou, Zhongxiang [1 ]
机构
[1] Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China
[2] St Petersburg State Univ, St Petersburg 199034, Russia
[3] ITMO Univ, St Petersburg 197101, Russia
基金
中国国家自然科学基金;
关键词
Glow discharge; plasma simulation; plasma sources; PLASMA; SIMULATION; MICRODISCHARGE; TRANSITION; GAP;
D O I
10.1109/TPS.2016.2602443
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper contains results of numerical and experimental investigation of glow discharge plasma created in a chamber of a new-type large-volume coaxial gridded hollow cathode. The discharge is created in argon at 25 Pa by applying time-varying power with frequency 20 kHz on electrodes. A 2-D model of the discharge was built using COMSOL Multiphysics. Self-consistent description of the discharge was obtained using the extended fluid approach, which couples continuity equations for charged particles and electron energy balance with Poisson's equation for electric potential. Electron transport coefficients and rates of electron-impact reactions were calculated using the electron energy distribution function. The spatial and radial distributions of plasma potential (V-p), electron density (n(e)), and electron temperature (T-e) were obtained. It is shown that the plasma inside the chamber is similar to the negative glow of a dc glow discharge. Comparison of numerical results with the Langmuir probe measurements of electron density and electron temperature is presented and showed a good agreement.
引用
收藏
页码:2965 / 2972
页数:8
相关论文
共 29 条
[1]  
[Anonymous], 2005, PRINCIPLES PLASMA DI, DOI [10.1002/0471724254, DOI 10.1002/0471724254]
[2]   Two-dimensional simulations of the transition from Townsend to glow discharge and subnormal oscillations [J].
Arslanbekov, RR ;
Kolobov, VI .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (23) :2986-2994
[3]   Study of the Spatiotemporal Evolution of Microwave Plasma in Argon [J].
Baeva, Margarita ;
Andrasch, Mathias ;
Ehlbeck, Joerg ;
Weltmann, Klaus-Dieter ;
Loffhagen, Detlef .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (10) :2774-2775
[4]   2-DIMENSIONAL MODEL OF A CAPACITIVELY COUPLED RF DISCHARGE AND COMPARISONS WITH EXPERIMENTS IN THE GASEOUS ELECTRONICS CONFERENCE REFERENCE REACTOR [J].
BOEUF, JP ;
PITCHFORD, LC .
PHYSICAL REVIEW E, 1995, 51 (02) :1376-1390
[5]   2D simulations of short-pulsed dielectric barrier discharge xenon excimer lamp [J].
Bogdanov, E. A. ;
Kudryavtsev, A. A. ;
Arslanbekov, R. R. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2006, 46 (10) :807-816
[6]   Fundamental Nonambipolarity of Electron Fluxes in 2D Plasmas [J].
Bogdanov, E. A. ;
Chirtsov, A. S. ;
Kudryavtsev, A. A. .
PHYSICAL REVIEW LETTERS, 2011, 106 (19)
[7]   Different approaches to fluid simulation of the longitudinal structure of the atmospheric-pressure microdischarge in helium [J].
Bogdanov, E. A. ;
Kapustin, K. D. ;
Kudryavtsev, A. A. ;
Chirtsov, A. S. .
TECHNICAL PHYSICS, 2010, 55 (10) :1430-1442
[8]   Simulation of pulsed dielectric barrier discharge xenon excimer lamp [J].
Bogdanov, EA ;
Kudryavtsev, AA ;
Arslanbekov, RR ;
Kolobov, VI .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2004, 37 (21) :2987-2995
[9]   Gas Heating and Transition to Obstructed Mode in DC Glow Microdischarge in Air [J].
Demidov, Evgenii ;
Eliseev, Stepan ;
Bogdanov, Evgeny A. ;
Kudryavtsev, Anatoly .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (10) :2558-2559
[10]   Comment on "A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma" [Phys. Plasmas 20, 012101 (2013)] [J].
Eliseev, S. I. ;
Kudryavtsev, A. A. .
PHYSICS OF PLASMAS, 2016, 23 (09)