Real-time scheduling for distributed permutation flowshops with dynamic job arrivals using deep reinforcement learning

被引:48
|
作者
Yang, Shengluo [1 ]
Wang, Junyi [2 ,3 ,4 ]
Xu, Zhigang [2 ,3 ,4 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai 200093, Peoples R China
[2] Chinese Acad Sci, Shenyang Inst Automat, Shenyang 110016, Peoples R China
[3] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110169, Peoples R China
[4] 135 Chuangxin Rd, Shenyang, Liaoning, Peoples R China
关键词
Distributed flowshop scheduling; Deep reinforcement learning; Real-time scheduling; Dynamic job arrivals; Intelligent scheduling; Deep Q -network; ITERATED GREEDY ALGORITHM; SHOP; METAHEURISTICS; SEARCH;
D O I
10.1016/j.aei.2022.101776
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Distributed manufacturing plays an important role for large-scale companies to reduce production and trans-portation costs for globalized orders. However, how to real-timely and properly assign dynamic orders to distributed workshops is a challenging problem. To provide real-time and intelligent decision-making of scheduling for distributed flowshops, we studied the distributed permutation flowshop scheduling problem (DPFSP) with dynamic job arrivals using deep reinforcement learning (DRL). The objective is to minimize the total tardiness cost of all jobs. We provided the training and execution procedures of intelligent scheduling based on DRL for the dynamic DPFSP. In addition, we established a DRL-based scheduling model for distributed flowshops by designing suitable reward function, scheduling actions, and state features. A novel reward function is designed to directly relate to the objective. Various problem-specific dispatching rules are introduced to provide efficient actions for different production states. Furthermore, four efficient DRL algorithms, including deep Q-network (DQN), double DQN (DbDQN), dueling DQN (DlDQN), and advantage actor-critic (A2C), are adapted to train the scheduling agent. The training curves show that the agent learned to generate better so-lutions effectively and validate that the system design is reasonable. After training, all DRL algorithms outper-form traditional meta-heuristics and well-known priority dispatching rules (PDRs) by a large margin in terms of solution quality and computation efficiency. This work shows the effectiveness of DRL for the real-time sched-uling of dynamic DPFSP.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Deep Reinforcement Learning for Solving Distributed Permutation Flow Shop Scheduling Problem
    Wang, Yijun
    Qian, Bin
    Hu, Rong
    Yang, Yuanyuan
    Chen, Wenbo
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 333 - 342
  • [22] Deep Reinforcement Learning Task Scheduling Method for Real-Time Performance Awareness
    Wang, Jinming
    Li, Shaobo
    Zhang, Xingxing
    Zhu, Keyu
    Xie, Cankun
    Wu, Fengbin
    IEEE ACCESS, 2025, 13 : 31385 - 31400
  • [23] Application of Deep Reinforcement Learning in Real-time Plan Scheduling of Power Grid
    Liu J.
    Song X.
    Yang N.
    Wan X.
    Cai Y.
    Huang Y.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (14): : 157 - 166
  • [24] A cooperative hierarchical deep reinforcement learning based multi-agent method for distributed job shop scheduling problem with random job arrivals
    Huang, Jiang-Ping
    Gao, Liang
    Li, Xin-Yu
    Zhang, Chun-Jiang
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 185
  • [25] Energy-aware systems for real-time job scheduling in cloud data centers: A deep reinforcement learning approach
    Yan, Jingchen
    Huang, Yifeng
    Gupta, Aditya
    Gupta, Anubhav
    Liu, Cong
    Li, Jianbin
    Cheng, Long
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 99
  • [26] INTEGRATION OF DEEP REINFORCEMENT LEARNING AND DISCRETE-EVENT SIMULATION FOR REAL-TIME SCHEDULING OF A FLEXIBLE JOB SHOP PRODUCTION
    Lang, Sebastian
    Behrendt, Fabian
    Lanzerath, Nico
    Reggelin, Tobias
    Mueller, Marcel
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 3057 - 3068
  • [27] Real-time Scheduling using Reinforcement Learning Technique for the Connected Vehicles
    Park, Seongjin
    Yoo, Younghwan
    2018 IEEE 87TH VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2018,
  • [28] Optimal real-time scheduling of battery operation using reinforcement learning
    Juarez, Carolina Quiroz
    Musilek, Petr
    2021 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2021,
  • [29] Real-time scheduling for a smart factory using a reinforcement learning approach
    Shiue, Yeou-Ren
    Lee, Ken-Chuan
    Su, Chao-Ton
    COMPUTERS & INDUSTRIAL ENGINEERING, 2018, 125 : 604 - 614
  • [30] Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
    Wang, Libing
    Hu, Xin
    Wang, Yin
    Xu, Sujie
    Ma, Shijun
    Yang, Kexin
    Liu, Zhijun
    Wang, Weidong
    COMPUTER NETWORKS, 2021, 190 (190)