Counting points on Calabi-Yau threefolds - Some computational aspects

被引:0
作者
Hulek, K [1 ]
Spandaw, J [1 ]
机构
[1] Leibniz Univ Hannover, Hannover, Germany
来源
APPLICATIONS OF ALGEBRAIC GEOMETRY TO CODING THEORY, PHYSICS AND COMPUTATION | 2001年 / 36卷
关键词
Calabi-Yau varieties; L-function; modularity; diophantine equations; modular forms;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss a number of examples of rigid Calabi-Yau varieties for which one can prove modularity. In this situation the number N-p of F-p-rational points of the Calabi-Yau is (via the Lefschetz fixed point formula) related to the Fourier coefficient a(p) of some modular form. In all cases which we discuss it turns out that it is much faster to compute ap than N-p.
引用
收藏
页码:195 / 205
页数:11
相关论文
共 11 条
  • [1] BARTH W, 1994, J ALGEBRAIC GEOM, V3, P173
  • [2] DELIGNE P, 1971, SEM BOURBAKI, V355
  • [3] FONTAINE JM, 1995, SER NUM THEORY, V1, P41
  • [4] HULEK K, 2001, IN PRESS ADV GEOMETR
  • [5] LIVNE R, 1987, CONT MATH, V67, P247
  • [6] Manin Y., 1972, IZV AKAD NAUK SSSR M, V36, P19
  • [7] MEYER C, 2000, THESIS MAINZ
  • [8] SAITO MH, MATHAG0009041
  • [9] Stein W., MODULAR FORMS DATABA
  • [10] VERRILL H, 2000, J NUMBER THEORY, V81, P509