Bilayered Scaffolds for Osteochondral Tissue Engineering

被引:112
作者
O'Shea, Timothy M. [2 ]
Miao, Xigeng [1 ,2 ]
机构
[1] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Brisbane, Qld 4059, Australia
[2] Queensland Univ Technol, Sch Engn Syst, Brisbane, Qld 4059, Australia
关键词
D O I
10.1089/ten.teb.2008.0327
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Osteoarthritis (OA) is a prevalent degenerative joint disease that places a significant burden on the socioeconomic efficacy of communities around the world. Tissue engineering repair of articular cartilage in synovial joints represents a potential OA treatment strategy superior to current surgical techniques. In particular, osteochondral tissue engineering, which promotes the simultaneous regeneration of articular cartilage and underlining subchondral bone, may be a clinically relevant approach toward impeding OA progression. The unique and complex functional demands of the two contrasting tissues that comprise osteochondral tissue require the use of bilayered scaffolds to promote individual growth of both on a single integrated implant. This paper reviews the three current bilayered scaffold strategies applied to solve this challenging problem, with a focus on the need for an innovative approach to design and fabrication of new optimized scaffold combinations to reinforce materials science as an important element of osteochondral tissue engineering.
引用
收藏
页码:447 / 464
页数:18
相关论文
共 126 条
[1]   Formation of biphasic constructs containing cartilage with a calcified zone interface [J].
Allan, K. S. ;
Pilliar, R. M. ;
Wang, J. ;
Grynpas, M. D. ;
Kandel, R. A. .
TISSUE ENGINEERING, 2007, 13 (01) :167-177
[2]  
Ambrosio AMA, 2001, J BIOMED MATER RES, V58, P295, DOI 10.1002/1097-4636(2001)58:3<295::AID-JBM1020>3.3.CO
[3]  
2-#
[4]  
[Anonymous], 1997, CLIN ORTHOP RELAT R, DOI DOI 10.1097/00003086-199709000-00033
[5]   Biodegradable implants for the treatment of osteochondral defects in a goat model [J].
Athanasiou, K ;
Korvick, D ;
Schenck, R .
TISSUE ENGINEERING, 1997, 3 (04) :363-373
[6]   Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid polyglycolic acid copolymers [J].
Athanasiou, KA ;
Niederauer, GG ;
Agrawal, CM .
BIOMATERIALS, 1996, 17 (02) :93-102
[7]   Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions [J].
Berkland, C ;
Kim, KK ;
Pack, DW .
JOURNAL OF CONTROLLED RELEASE, 2001, 73 (01) :59-74
[8]   Mechanical properties of highly porous PDLLA/Bioglass® composite foams as scaffolds for bone tissue engineering [J].
Blaker, JJ ;
Maquet, V ;
Jérôme, R ;
Boccaccini, AR ;
Nazhat, SN .
ACTA BIOMATERIALIA, 2005, 1 (06) :643-652
[9]   Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery [J].
Blaker, Jonny J. ;
Knowles, Jonathan C. ;
Day, Richard M. .
ACTA BIOMATERIALIA, 2008, 4 (02) :264-272
[10]   Differential effects of growth factors on tissue-engineered cartilage [J].
Blunk, T ;
Sieminski, AL ;
Gooch, KJ ;
Courter, DL ;
Hollander, AP ;
Nahir, M ;
Langer, R ;
Vunjak-Novakovic, G ;
Freed, JE .
TISSUE ENGINEERING, 2002, 8 (01) :73-84