Local Spectral Radius Preservers

被引:30
作者
Bourhim, Abdellatif [1 ]
Mashreghi, Javad [2 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Spectrum; the single-valued extension property; finite rank operators; LINEAR-MAPS;
D O I
10.1007/s00020-013-2041-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize surjective maps on , the space of all bounded operators on an infinite-dimensional complex Banach space X, which satisfy "r (T-S) (x) = 0 if and only if for every and ". We do not assume to be linear, or even additive, and thus this characterization is a step forward in generalizing some preceding results.
引用
收藏
页码:95 / 104
页数:10
相关论文
共 9 条
[1]  
AUPETIT B, 1991, PRIMER SPECTRAL THEO
[2]  
Bhatia R, 1999, STUD MATH, V134, P99
[3]   Additive maps preserving local spectrum [J].
Bourhim, Abdellatif ;
Ransford, Thomas .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 55 (03) :377-385
[4]   Local spectrum and local spectral radius of an operator at a fixed vector [J].
Bracic, Janko ;
Mueller, Vladimir .
STUDIA MATHEMATICA, 2009, 194 (02) :155-162
[5]   Linear Maps Preserving Operators of Local Spectral Radius Zero [J].
Costara, Constantin .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2012, 73 (01) :7-16
[6]   Automatic continuity for linear surjective mappings decreasing the local spectral radius at some fixed vector [J].
Costara, Constantin .
ARCHIV DER MATHEMATIK, 2010, 95 (06) :567-573
[7]   SPECTRUM-PRESERVING LINEAR-MAPS [J].
JAFARIAN, AA ;
SOUROUR, AR .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 66 (02) :255-261
[8]  
LAURSEN KB, 2000, LONDON MATH SOC MONO, V20
[9]   Invertibility preserving linear maps on L(X) [J].
Sourour, AR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :13-30