Finite-time blow-up and blow-up rates for the Gierer-Meinhardt system

被引:6
|
作者
Zou, Henghui [1 ]
机构
[1] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
关键词
blow-up rate; Gierer-Meinhardt system; finite-time blow-up; reaction-diffusion system; Primary; 35K51; 35K57; 35K58; REACTION-DIFFUSION SYSTEMS;
D O I
10.1080/00036811.2014.969247
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Gierer-Meinhardt system (1.1), shown below, on a bounded smooth domain () with a homogeneous Neumann boundary condition. Under suitable conditions on the exponents , , , and , we establish sufficient conditions for finite-time blow-up and obtain blow-up rates for blow-up solutions. This work is a continuation of our earlier result in this direction. The Gierer-Meinhardt system was introduced in to model activator-inhibitor systems in pattern formation in ecological systems.
引用
收藏
页码:2110 / 2132
页数:23
相关论文
共 50 条
  • [21] Boundedness and finite-time blow-up in a chemotaxis system with nonlinear signal production
    Wang, Wanwan
    Li, Yuxiang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 59
  • [22] Finite-Time Blow-up in a Quasilinear Degenerate Chemotaxis System with Flux Limitation
    Yuka Chiyoda
    Masaaki Mizukami
    Tomomi Yokota
    Acta Applicandae Mathematicae, 2020, 167 : 231 - 259
  • [23] Existence and boundary blow-up rates of solutions for boundary blow-up elliptic systems
    Wang, Mingxin
    Wei, Lei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 2022 - 2032
  • [24] Blow-Up
    Fruhauf, Siegfried A.
    SHORT FILM STUDIES, 2020, 10 (01) : 91 - 93
  • [25] BLOW-UP
    HATCHETT, W
    NEW SOCIETY, 1986, 77 (1237): : 7 - 8
  • [26] Blow-Up
    Simon, Taryn
    De Palma, Brian
    ARTFORUM INTERNATIONAL, 2012, 50 (10): : 246 - 253
  • [27] Blow-up
    Hoffmann, Roald
    AMERICAN SCIENTIST, 2007, 95 (01) : 20 - 23
  • [28] Blow-Up
    Sharrett, Christopher
    CINEASTE, 2017, 42 (04): : 54 - 56
  • [29] Blow-up
    Iannotta, B
    NEW SCIENTIST, 1998, 157 (2120) : 40 - 43
  • [30] TOTAL BLOW-UP VERSUS SINGLE POINT BLOW-UP
    BEBERNES, J
    BRESSAN, A
    LACEY, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 73 (01) : 30 - 44