Finite-time blow-up and blow-up rates for the Gierer-Meinhardt system

被引:6
作者
Zou, Henghui [1 ]
机构
[1] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
关键词
blow-up rate; Gierer-Meinhardt system; finite-time blow-up; reaction-diffusion system; Primary; 35K51; 35K57; 35K58; REACTION-DIFFUSION SYSTEMS;
D O I
10.1080/00036811.2014.969247
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Gierer-Meinhardt system (1.1), shown below, on a bounded smooth domain () with a homogeneous Neumann boundary condition. Under suitable conditions on the exponents , , , and , we establish sufficient conditions for finite-time blow-up and obtain blow-up rates for blow-up solutions. This work is a continuation of our earlier result in this direction. The Gierer-Meinhardt system was introduced in to model activator-inhibitor systems in pattern formation in ecological systems.
引用
收藏
页码:2110 / 2132
页数:23
相关论文
共 9 条
  • [1] Liouville theorems and blow up behaviour in semilinear reaction diffusion systems
    Andreucci, D
    Herrero, MA
    Velazquez, JJL
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (01): : 1 - 53
  • [2] DiBenedetto E., 1993, Degenerate Parabolic Equations, DOI DOI 10.1007/978-1-4612-0895-2
  • [3] Friedman A, 1985, INDIANA U MATH J, V34, P47
  • [4] Gierer A, 1972, KYBERNETIC BERLIN, V12, P1087
  • [5] Ladyzenskaja O.A., 1967, LINEAR QUASILINEAR E
  • [6] The dynamics of a kinetic activator-inhibitor system
    Ni, Wei-Ming
    Suzuki, Kanako
    Takagi, Izumi
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (02) : 426 - 465
  • [7] Protter M.H., 1967, Maximum Principles in Differential Equations
  • [8] ON GLOBAL EXISTENCE FOR THE GIERER-MEINHARDT SYSTEM
    Zou, Henghui
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (01) : 583 - 591
  • [9] Blow-up rates for semi-linear reaction-diffusion systems
    Zou, Henghui
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (03) : 843 - 867