Nested efficient congruencing and relatives of Vinogradov's mean value theorem

被引:75
作者
Wooley, Trevor D. [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
基金
欧盟地平线“2020”; 美国国家科学基金会; 欧洲研究理事会;
关键词
MAIN CONJECTURE; DIAGONAL EQUATIONS; RATIONAL-POINTS; NUMBER; BOUNDS;
D O I
10.1112/plms.12204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply a nested variant of multigrade efficient congruencing to estimate mean values related to that of Vinogradov. We show that when phi j is an element of Z[t] (1 <= j <= k) is a system of polynomials with non-vanishing Wronskian, and s <= k(k+1)/2, then for all complex sequences (an), and for each epsilon>0, one has integral[0,1)k n-ary sumation |n|<= Xane(alpha 1 phi 1(n)+MIDLINE HORIZONTAL ELLIPSIS+alpha k phi k(n))2sd alpha MUCH LESS-THANX epsilon n-ary sumation |n|<= X|an|2s.As a special case of this result, we confirm the main conjecture in Vinogradov's mean value theorem for all exponents k, recovering the recent conclusions of the author (for k=3) and Bourgain, Demeter and Guth (for k > 4). In contrast with the l2-decoupling method of the latter authors, we make no use of multilinear Kakeya estimates, and thus our methods are of sufficient flexibility to be applicable in algebraic number fields, and in function fields. We outline such extensions.
引用
收藏
页码:942 / 1016
页数:75
相关论文
共 62 条
  • [1] Anderson T. C., 2018, DISCRETE ANAL, P10
  • [2] [Anonymous], PREPRINT
  • [3] [Anonymous], 1949, J LOND MATH SOC
  • [4] [Anonymous], 1948, P LOND MATH SOC
  • [5] [Anonymous], 1938, Q J MATH
  • [6] Arkhipov GI, 2004, DEGRUYTER EXPOS MATH, V39, P1, DOI 10.1515/9783110197983
  • [7] Baker R. C., 1986, SEL MATH-NEW SER, VVol. 1
  • [8] Birch B., 1961, Proc. Camb. Philos. Soc., V57, P449
  • [9] The number of integer points on Vinogradov's quadric
    Blomer, V.
    Bruedern, J.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2010, 160 (03): : 243 - 256
  • [10] On the Vinogradov mean value
    Bourgain, J.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 296 (01) : 30 - 40