Recent advances in molecular engineering of redox active organic molecules for nonaqueous flow batteries

被引:103
作者
Kowalski, Jeffrey A. [1 ,2 ]
Su, Liang [1 ,2 ]
Milshtein, Jarrod D. [1 ,3 ]
Brushett, Fikile R. [1 ,2 ]
机构
[1] Joint Ctr Energy Storage Res, Cambridge, MA USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
基金
美国能源部; 美国国家科学基金会;
关键词
ELECTROCHEMICAL PROPERTIES; ENERGY-STORAGE; ELECTROLYTES; CATHOLYTE; TRANSPORT; WEIGHT; IMPACT;
D O I
10.1016/j.coche.2016.08.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cost-effective electrochemical energy storage will play a critical role as society transitions to a sustainable energy economy. Nonaqueous flow batteries employing redox active organic molecules are an emerging energy storage concept. A key advantage of this device over the more established aqueous flow battery is the promise for higher cell potentials (>3 V), enabled by the larger electrochemical stability windows of nonaqueous electrolytes. Additionally, nonaqueous flow batteries could leverage new redox couples that are incompatible with aqueous electrolytes due to low solubility, chemical reactivity, and redox potentials outside of the aqueous stability window. Taking advantage of these characteristics may lead to higher energy densities, smaller system footprints, and lower costs. This mini review summarizes recent developments in all-organic nonaqueous chemistries with a focus on tailoring organic molecules for improved physical and electrochemical properties. Key opportunities and challenges in the science and engineering of these devices are presented with a goal of meeting stringent grid cost targets.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 47 条
[1]   Redox flow batteries for the storage of renewable energy: A review [J].
Alotto, Piergiorgio ;
Guarnieri, Massimo ;
Moro, Federico .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 29 :325-335
[2]  
[Anonymous], 2013, GRID EN STOR
[3]  
[Anonymous], 2015, FUT SOL EN
[4]   Reduction potential predictions of some aromatic nitrogen-containing molecules [J].
Assary, Rajeev S. ;
Brushett, Fikile R. ;
Curtiss, Larry A. .
RSC ADVANCES, 2014, 4 (101) :57442-57451
[5]   Electrochemistry of redox-active Group 15/16 heterocycles [J].
Boeré, RT ;
Roemmele, TL .
COORDINATION CHEMISTRY REVIEWS, 2000, 210 :369-445
[6]   An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery [J].
Brushett, Fikile R. ;
Vaughey, John T. ;
Jansen, Andrew N. .
ADVANCED ENERGY MATERIALS, 2012, 2 (11) :1390-1396
[7]   BF3-promoted electrochemical properties of quinoxaline in propylene carbonate [J].
Carino, Emily V. ;
Diesendruck, Charles E. ;
Moore, Jeffrey S. ;
Curtiss, Larry A. ;
Assary, Rajeev S. ;
Brushett, Fikile R. .
RSC ADVANCES, 2015, 5 (24) :18822-18831
[8]   Evaluation of electrolytes for redox flow battery applications [J].
Chakrabarti, M. H. ;
Dryfe, R. A. W. ;
Roberts, E. P. L. .
ELECTROCHIMICA ACTA, 2007, 52 (05) :2189-2195
[9]   Redox shuttles for safer lithium-ion batteries [J].
Chen, Zonghai ;
Qin, Yan ;
Amine, Khalil .
ELECTROCHIMICA ACTA, 2009, 54 (24) :5605-5613
[10]   Synthesis of Pyridine- and Pyrazine-BF3 Complexes and Their Characterization in Solution and Solid State [J].
Chenard, Etienne ;
Sutrisno, Andre ;
Zhu, Lingyang ;
Assary, Rajeev S. ;
Kowalski, Jeffrey A. ;
Barton, John L. ;
Bertke, Jeffery A. ;
Gray, Danielle L. ;
Brushett, Fikile R. ;
Curtiss, Larry A. ;
Moore, Jeffrey S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (16) :8461-8471