Numerical and experimental study of a rotating magnetic particle chain in a viscous fluid

被引:89
作者
Gao, Y. [1 ]
Hulsen, M. A. [1 ]
Kang, T. G. [2 ]
den Toonder, J. M. J. [1 ,3 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
[2] Korea Aerosp Univ, Sch Aerosp & Mech Engn, Goyang City, South Korea
[3] Royal Philips Elect, Philips Corp Technol, Eindhoven, Netherlands
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 04期
关键词
LATTICE BOLTZMANN; DYNAMICS; MICROFLUIDICS; SIMULATIONS; FLOWS;
D O I
10.1103/PhysRevE.86.041503
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A simple and fast numerical method is developed capable of accurately determining the 3D rotational dynamics of a magnetic particle chain in an infinite fluid domain. The focus is to control the alternating breakup and reformation of the bead chain which we believe is essential to achieve effective fluid mixing at small scales. The numerical scheme makes use of magnetic dipole moments and extended forms of the Oseen-Burgers tensor to account for both the magnetic and hydrodynamic interactions between the particles. It is shown that the inclusion of hydrodynamic interaction between the particles is crucial to obtain a good description of the particle dynamics. Only a small error of deviation is observed when benchmarking the numerical scheme against a more computationally intensive method, the direct simulation method. The numerical results are compared with experiments and the simulated rotational dynamics correspond well with those obtained from video-microscopy experiments qualitatively and quantitatively. In addition, a dimensionless number (R-T) is derived as the sole control parameter for the rotational bead chain dynamics. Numerically and experimentally, R-T approximate to 1 is the boundary between rigid "rod" and dynamic "breaking and reformation" behaviors.
引用
收藏
页数:11
相关论文
共 29 条
[21]   Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields [J].
Petousis, Ioannis ;
Homburg, Erik ;
Derks, Roy ;
Dietzel, Andreas .
LAB ON A CHIP, 2007, 7 (12) :1746-1751
[22]   Magnetic microsphere-based mixers for microdroplets [J].
Roy, Tamal ;
Sinha, Ashok ;
Chakraborty, Sayan ;
Ganguly, Ranjan ;
Puri, Ishwar K. .
PHYSICS OF FLUIDS, 2009, 21 (02)
[23]   Controlled surface-induced flows from the motion of self-assembled colloidal walkers [J].
Sing, Charles E. ;
Schmid, Lothar ;
Schneider, Matthias F. ;
Franke, Thomas ;
Alexander-Katz, Alfredo .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (02) :535-540
[24]   Microfluidics: Fluid physics at the nanoliter scale [J].
Squires, TM ;
Quake, SR .
REVIEWS OF MODERN PHYSICS, 2005, 77 (03) :977-1026
[25]   A chaotic mixer for magnetic bead-based micro cell sorter [J].
Suzuki, H ;
Ho, CM ;
Kasagi, N .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2004, 13 (05) :779-790
[26]   Self-assembled artificial cilia [J].
Vilfan, Mojca ;
Potocnik, Anton ;
Kavcic, Blaz ;
Osterman, Natan ;
Poberaj, Igor ;
Vilfan, Andrej ;
Babic, Dusan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (05) :1844-1847
[27]   Rotational magnetic particles microrheology: The Maxwellian case [J].
Wilhelm, C ;
Browaeys, J ;
Ponton, A ;
Bacri, JC .
PHYSICAL REVIEW E, 2003, 67 (01) :10
[28]   Dynamics of rotating paramagnetic particles simulated by lattice Boltzmann and particle dynamics methods [J].
Yadav, A. ;
Calhoun, R. ;
Phelan, P. E. ;
Vuppu, A. K. ;
Garcia, A. A. ;
Hayes, M. .
IEE PROCEEDINGS-NANOBIOTECHNOLOGY, 2006, 153 (06) :145-150
[29]   A COMPARISON BETWEEN SIMULATIONS AND VARIOUS APPROXIMATIONS FOR HOOKEAN DUMBBELLS WITH HYDRODYNAMIC INTERACTION [J].
ZYLKA, W ;
OTTINGER, HC .
JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (01) :474-480