Zeta functions of discrete self-similar sets

被引:8
作者
Essouabri, Driss [1 ]
Lichtin, Ben [1 ]
机构
[1] Univ St Etienne, PRES Univ Lyon, Fac Sci & Tech, Inst Camille Jordan,CNRS,UMR 5208,Dept Math, F-42023 St Etienne 2, France
关键词
Self-similar discrete sets; Fractals; Zeta functions; Meromorphic continuation; Hausdorff dimension; Erdos distance problem; Ar'nold sail; CONTINUED FRACTIONS; DIMENSION; FRACTALS;
D O I
10.1016/j.aim.2012.09.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a class of countable and discrete subsets of a Euclidean space that are "self-similar" with respect to a finite set of (affine) similarities. Any such set can be interpreted as having a fractal structure. We introduce a zeta function for these sets, and derive basic analytic properties of this "fractal" zeta function. Motivating examples that come from combinatorial geometry and arithmetic are given particular attention. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:142 / 187
页数:46
相关论文
共 33 条
[21]  
LACHAUD G, 1998, CONT MATH, V210, P373
[22]  
Lapidus M L, 2006, Fractal Geometry, Complex Dimensions and Zeta Functions
[23]   THE ASYMPTOTICS OF A LATTICE POINT PROBLEM ASSOCIATED TO A FINITE NUMBER OF POLYNOMIALS .1. [J].
LICHTIN, B .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (01) :139-192
[24]  
Mahler K, 1930, MATH ANN, V102, P30, DOI 10.1007/BF01782337
[25]   ON THE HAUSDORFF DIMENSION AND CAPACITIES OF INTERSECTIONS [J].
MATTILA, P .
MATHEMATIKA, 1985, 32 (64) :213-217
[26]   ADDITIVE FUNCTIONS OF INTERVALS AND HAUSDORFF MEASURE [J].
MORAN, PAP .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1946, 42 (01) :15-23
[27]  
Moussafir J.O., 1992, THESIS U PARIS 9 DAU
[28]  
Pisot C., 1966, SEMINAIRE MATH SUPER
[29]  
Shintani T., 1976, Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics, V23, P393
[30]   Near optimal bounds for the Erdos distinct distances problem in high dimensions [J].
Solymosi, Jozsef ;
Vu, Van H. .
COMBINATORICA, 2008, 28 (01) :113-125