Repeated probit regression when covariates are measured with error

被引:6
作者
Follmann, DA [1 ]
Hunsberger, SA [1 ]
Albert, PS [1 ]
机构
[1] NHLBI, Off Biostat Res, Rockledge Ctr 2, Bethesda, MD 20892 USA
关键词
errors-in-variables; measurement error; probit regression; random effects models;
D O I
10.1111/j.0006-341X.1999.00403.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper develops a model for repeated binary regression when a covariate is measured with error. The model allows for estimating the effect of the true value of the covariate on a repeated binary response. The choice of a probit link for the effect of the error-free covariate, coupled with normal measurement error for the error-free covariate, results in a probit model after integrating over the measurement error distribution. We propose a two-stage estimation procedure where, in the first stage, a linear mixed model is used to fit the repeated covariate. In the second stage, a model for the correlated binary responses conditional on the linear mixed model estimates is fit to the repeated binary data using generalized estimating equations. The approach is demonstrated using nutrient safety data from the Diet Intervention of School Age Children (DISC) study.
引用
收藏
页码:403 / 409
页数:7
相关论文
共 16 条
[1]  
CARROLL RJ, 1984, BIOMETRIKA, V71, P19, DOI 10.2307/2336392
[2]  
Carroll RJ., 1995, MEASUREMENT ERROR NO
[3]  
Efron B., 1994, INTRO BOOTSTRAP, V57, DOI DOI 10.1201/9780429246593
[4]  
Fuller W. A., 2009, Measurement error models
[5]  
GIBSON RS, 1993, J CAN DIET ASSOC, V54, P33
[6]  
HARVILLE DA, 1977, J AM STAT ASSOC, V72, P320, DOI 10.2307/2286796
[7]  
Johnson N. L., 1970, DISTRIBUTIONS STAT C, V2
[8]   RANDOM-EFFECTS MODELS FOR LONGITUDINAL DATA [J].
LAIRD, NM ;
WARE, JH .
BIOMETRICS, 1982, 38 (04) :963-974
[9]  
LAUER RM, 1995, JAMA-J AM MED ASSOC, V273, P1429, DOI 10.1001/jama.273.18.1429
[10]  
Liang K.Y., 1991, ESTIMATING FUNCTIONS, P47