Oscillation for first-order nonlinear delay differential equations

被引:15
作者
Tang, XH [1 ]
机构
[1] Cent S Univ, Dept Appl Math, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
oscillation; nonlinear; delay differential equation;
D O I
10.1006/jmaa.2001.7684
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Almost sharp oscillation and nonoscillation criteria are obtained for the first-order nonlinear delay differential equation x'(t) + p(t)Pi(j=1)(m)\x(t - tau(j))\(alphaj)sign[x(t - tau(1))] = 0, t greater than or equal to t(0), where Sigma(j=1)(m) alpha(j) > 1. Some applications are given. (C) 2001 Elsevier Science.
引用
收藏
页码:510 / 521
页数:12
相关论文
共 10 条
[1]  
Erbe L.H., 1995, Oscillation Theory for Functional Differential Equations
[2]  
Gy??ri I., 1991, OSCILLATION THEORY D
[3]   OSCILLATIONS CAUSED BY SEVERAL RETARDED AND ADVANCED ARGUMENTS [J].
LADAS, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 44 (01) :134-152
[4]  
LADAS G, 1992, FUNKCIAL EKVAC, V25, P105
[6]   NON-LINEAR DELAY DIFFERENTIAL-INEQUALITIES [J].
STAVROULAKIS, IP .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (04) :389-396
[7]  
Tang Xianhua, 2000, Applied Mathematics. Series B, A Journal of Chinese Universities, V15, P21
[8]   On a hyperlogistic delay equation [J].
Yu, JS ;
Wu, JH ;
Zou, XF .
GLASGOW MATHEMATICAL JOURNAL, 1996, 38 :255-261
[9]  
YU JS, 1991, ACTA MATH SINICA, V34, P517
[10]  
YU JS, 1990, ACTA MATH SINICA, V33, P152