Diffusion and defect reactions between donors, C, and vacancies in Ge. II. Atomistic calculations of related complexes

被引:81
作者
Chroneos, A. [1 ]
Grimes, R. W. [2 ]
Uberuaga, B. P. [3 ]
Bracht, H. [1 ]
机构
[1] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany
[2] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England
[3] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW B | 2008年 / 77卷 / 23期
关键词
D O I
10.1103/PhysRevB.77.235208
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electronic structure calculations are used to study the stability, concentration, and migration of vacancy-donor (phosphorus, arsenic, and antimony) complexes in germanium, in the presence of carbon. The association of carbon with mobile vacancy-donor pairs can lead to energetically favorable and relatively immobile complexes. It is predicted that the complexes formed between lattice vacancies, carbon, and antimony substitutional atoms are more stable and less mobile compared to complexes composed of vacancies, carbon, and phosphorus or arsenic atoms. Then, with the use of mass action analysis, the relative concentrations of the most important complexes are calculated, which depend also on their relative stability not just their absolute stability. Overall, the theoretical predictions are consistent with experimental results, which determined that the diffusion of vacancy-donor defects is retarded in the presence of carbon, especially in samples with a high concentration of carbon. In addition, the calculations provide information on the structure and the equilibrium concentration of the most important complexes and details of their association energies.
引用
收藏
页数:7
相关论文
共 54 条
  • [1] Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of silicon phases and defects
    Batista, Enrique R.
    Heyd, Jochen
    Hennig, Richard G.
    Uberuaga, Blas P.
    Martin, Richard L.
    Scuseria, Gustavo E.
    Umrigar, C. J.
    Wilkins, John W.
    [J]. PHYSICAL REVIEW B, 2006, 74 (12)
  • [2] Self- and foreign-atom diffusion in semiconductor isotope heterostructures. II. Experimental results for silicon
    Bracht, H.
    Silvestri, H. H.
    Sharp, I. D.
    Haller, E. E.
    [J]. PHYSICAL REVIEW B, 2007, 75 (03)
  • [3] Atomic transport in germanium and the mechanism of arsenic diffusion
    Bracht, Hartmut
    Brotzmann, Sergej
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2006, 9 (4-5) : 471 - 476
  • [4] Intrinsic and extrinsic diffusion of phosphorus, arsenic, and antimony in germanium
    Brotzmann, Sergej
    Bracht, Hartmut
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 103 (03)
  • [5] Germanium diffusion mechanisms in silicon from first principles
    Caliste, Damien
    Pochet, Pascal
    Deutsch, Thierry
    Lancon, Frederic
    [J]. PHYSICAL REVIEW B, 2007, 75 (12):
  • [6] Accurate modelling of average phosphorus diffusivities in germanium after long thermal anneals: evidence of implant damage enhanced diffusivities
    Carroll, M. S.
    Koudelka, R.
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2007, 22 (01) : S164 - S167
  • [7] First-principles study of the diffusion mechanisms of the self-interstitial in germanium
    Carvalho, A.
    Jones, R.
    Goss, J. P.
    Janke, C.
    Oberg, S.
    Briddon, P. R.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (13)
  • [8] Atomic scale simulations of arsenic-vacancy complexes in germanium and silicon
    Chroneos, A.
    Grimes, R. W.
    Tsamis, C.
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2006, 9 (4-5) : 536 - 540
  • [9] Implantation and diffusion of phosphorous in germanium
    Chroneos, A.
    Skarlatos, D.
    Tsamis, C.
    Christofi, A.
    McPhail, D. S.
    Hung, R.
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2006, 9 (4-5) : 640 - 643
  • [10] Atomic scale simulations of donor-vacancy pairs in germanium
    Chroneos, A.
    Grimes, R. W.
    Tsamis, C.
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2007, 18 (07) : 763 - 768