Continuity and uniqueness of percolation critical parameters in finitary random interlacements

被引:0
|
作者
Cai, Zhenhao [1 ]
Procaccia, Eviatar B. [2 ]
Zhang, Yuan [1 ]
机构
[1] Peking Univ, Beijing, Peoples R China
[2] Technion Israel Inst Technol, Haifa, Israel
来源
基金
国家重点研发计划;
关键词
finitary random interlacements; percolation; critical parameteres; PHASE-TRANSITION; SHARPNESS;
D O I
10.1214/22-EJP824
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the critical percolation parameter for Finitary Random Interlacements (FRI) is continuous with respect to the path length parameter T. The proof uses a result which is interesting on its own right; equality of natural critical parameters for FRI percolation phase transition.
引用
收藏
页数:46
相关论文
共 50 条
  • [21] On the critical probability of percolation on random causal triangulations
    Cerda-Hernandez, Jose
    Yambartsev, Anatoly
    Zohren, Stefan
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2017, 31 (02) : 215 - 228
  • [22] NONUNIVERSALITY AND CONTINUITY OF THE CRITICAL COVERED VOLUME FRACTION IN CONTINUUM PERCOLATION
    MEESTER, R
    ROY, R
    SARKAR, A
    JOURNAL OF STATISTICAL PHYSICS, 1994, 75 (1-2) : 123 - 134
  • [23] On the continuity of the critical value for long range percolation in the exponential case
    Meester, R
    Steif, JE
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (02) : 483 - 504
  • [24] UNIQUENESS OF THE INFINITE CLUSTER AND CONTINUITY OF CONNECTIVITY FUNCTIONS FOR SHORT AND LONG-RANGE PERCOLATION
    AIZENMAN, M
    KESTEN, H
    NEWMAN, CM
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 111 (04) : 505 - 531
  • [25] Continuity for the Rate Function of the Simple Random Walk on Supercritical Percolation Clusters
    Kubota, Naoki
    JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (04) : 1948 - 1973
  • [26] Continuity for the Rate Function of the Simple Random Walk on Supercritical Percolation Clusters
    Naoki Kubota
    Journal of Theoretical Probability, 2020, 33 : 1948 - 1973
  • [27] The critical scaling property of random percolation porous media
    Liu Zhi-Feng
    Lai Yuan-Ting
    Gang, Zhao
    Zhang You-Wei
    Liu Zheng-Feng
    Wang Xiao-Hong
    ACTA PHYSICA SINICA, 2008, 57 (04) : 2011 - 2015
  • [28] Characterization of the critical density for percolation in random geometric graphs
    Kong, Zhenning
    Yeh, Edmund M.
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 151 - +
  • [29] Core percolation in random graphs: a critical phenomena analysis
    M. Bauer
    O. Golinelli
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 24 : 339 - 352
  • [30] Core percolation in random graphs: a critical phenomena analysis
    Bauer, M
    Golinelli, O
    EUROPEAN PHYSICAL JOURNAL B, 2001, 24 (03): : 339 - 352