Global weak solutions to equations of motion for magnetic fluids

被引:37
作者
Amirat, Youcef [1 ]
Hamdache, Kamel [3 ]
Murat, Francois [2 ]
机构
[1] Univ Clermont Ferrand, Math Lab, CNRS, UMR 6620, F-63177 Clermont Ferrand, France
[2] Univ Paris 06, Lab Jacques Louis Lions, CNRS, UMR 7641, F-75252 Paris 05, France
[3] Ecole Polytech, Ctr Math Appl, CNRS, UMR 7641, F-91128 Palaiseau, France
关键词
magnetic fluid flow; Navier-Stokes equations; magnetization; angular momentum; weak solutions;
D O I
10.1007/s00021-006-0234-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the differential system governing the flow of an incompressible ferrofluid under the action of a magnetic field. The system consists of the Navier-Stokes equations, the angular momentum equation, the magnetization equation, and the magnetostatic equations. We prove, by using the Galerkin method, a global in time existence of weak solutions with finite energy of an initial boundary-value problem and establish the long-time behavior of such solutions. The main difficulty is due to the singularity of the gradient magnetic force.
引用
收藏
页码:326 / 351
页数:26
相关论文
共 29 条
[1]  
DAUTRAY R, 1984, ANAL MATH CALCUL NUM, pT5
[2]  
DUVAUT G, 1972, ARCH RATION MECH AN, V46, P241
[3]  
ERINGEN AC, 1966, J MATH MECH, V6, P1
[4]  
Galdi G.P., 1994, Springer Tracts in Natural Philosophy, V39
[5]  
Galdi G.P., 1994, Springer Tracts in Natural Philosophy, V38
[6]   NOTE ON EXISTENCE AND UNIQUENESS OF SOLUTIONS OF MICROPOLAR FLUID EQUATIONS [J].
GALDI, GP ;
RIONERO, S .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1977, 15 (02) :105-108
[7]   BLOCH EQUATION FOR CONDUCTION-ELECTRON SPIN RESONANCE [J].
GASPARI, GD .
PHYSICAL REVIEW, 1966, 151 (01) :215-&
[8]  
Gerbeau J-F., 1997, Adv. Differ. Equ., V2, P427
[9]   A coupled system arising in magnetohydrodynamics [J].
Gerbeau, JF ;
Le Bris, C .
APPLIED MATHEMATICS LETTERS, 1999, 12 (03) :53-57
[10]   Mathematical modelling of magnetically targeted drug delivery [J].
Grief, AD ;
Richardson, G .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 293 (01) :455-463