Substrate effects on the thermal conductivity of epitaxial graphene nanoribbons

被引:49
作者
Guo, Zhi-Xin [1 ]
Ding, J. W. [1 ,2 ]
Gong, Xin-Gao [3 ,4 ]
机构
[1] Xiangtan Univ, Dept Phys, Xiangtan 411105, Hunan, Peoples R China
[2] Nanjing Univ Post Telecommun, Coll Elect Sci Engn, Nanjing 211106, Jiangsu, Peoples R China
[3] Fudan Univ, Key Lab Computat Phys Sci MOE, Shanghai 200433, Peoples R China
[4] Fudan Univ, Surface Phys Lab, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS; CARBON NANOTUBES; HEAT-CONDUCTION; GRAPHITE; LAYER; PHASE;
D O I
10.1103/PhysRevB.85.235429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the effect of SiC substrate on thermal conductivity of epitaxial graphene nanoribbons (GNRs) using the nonequilibrium molecular dynamics method. We show that the substrate has strong interaction with single-layer GNRs during the thermal transport, which largely reduces the thermal conductivity. The high thermal conductivity of suspended GNRs is obtained in the second layers of bilayer GNRs, which has a weak van der Waals interaction with the underlying structures. The out-of-plane phonon mode is found to play a critical role on the thermal conductivity variation of the second GNR layer induced by the underlying structures. The effect of disordered edge defects on thermal conductivity is further investigated. The results show that the disordered edge defects can remarkably decrease thermal conductivity of GNRs weakly interacted with substrate, while the effect becomes minor on GNRs strongly interacted with substrate.
引用
收藏
页数:6
相关论文
共 50 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[3]   Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons [J].
Cao, Hai-Yuan ;
Guo, Zhi-Xin ;
Xiang, Hongjun ;
Gong, Xin-Gao .
PHYSICS LETTERS A, 2012, 376 (04) :525-528
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Influence of hydrogen functionalization on thermal conductivity of graphene: Nonequilibrium molecular dynamics simulations [J].
Chien, Shih-Kai ;
Yang, Yue-Tzu ;
Chen, Cha'o-Kuang .
APPLIED PHYSICS LETTERS, 2011, 98 (03)
[6]   Edge-disorder-dependent transport length scales in graphene nanoribbons: From Klein defects to the superlattice limit [J].
Cresti, Alessandro ;
Roche, Stephan .
PHYSICAL REVIEW B, 2009, 79 (23)
[7]   Epitaxial graphene [J].
de Heer, Walt A. ;
Berger, Claire ;
Wu, Xiaosong ;
First, Phillip N. ;
Conrad, Edward H. ;
Li, Xuebin ;
Li, Tianbo ;
Sprinkle, Michael ;
Hass, Joanna ;
Sadowski, Marcin L. ;
Potemski, Marek ;
Martinez, Gerard .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :92-100
[8]   Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors [J].
Dimitrakopoulos, Christos ;
Lin, Yu-Ming ;
Grill, Alfred ;
Farmer, Damon B. ;
Freitag, Marcus ;
Sun, Yanning ;
Han, Shu-Jen ;
Chen, Zhihong ;
Jenkins, Keith A. ;
Zhu, Yu ;
Liu, Zihong ;
McArdle, Timothy J. ;
Ott, John A. ;
Wisnieff, Robert ;
Avouris, Phaedon .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (05) :985-992
[9]   Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions [J].
Dubi, Yonatan ;
Di Ventra, Massimiliano .
REVIEWS OF MODERN PHYSICS, 2011, 83 (01) :131-155
[10]   Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study [J].
Emtsev, K. V. ;
Speck, F. ;
Seyller, Th. ;
Ley, L. ;
Riley, J. D. .
PHYSICAL REVIEW B, 2008, 77 (15)