Uniform approximation on [-1,1] via discrete de la Vallee Poussin means

被引:19
作者
Themistoclakis, Woula [1 ]
机构
[1] CNR Natl Res Council Italy, Naples Branch, Ist Applicaz Calcolo Mauro Picone, I-80131 Naples, Italy
关键词
de la Vallee Poussin mean; Polynomial interpolation; Jacobi zeros; POLYNOMIAL-APPROXIMATION; LAGRANGE INTERPOLATION; OPERATORS;
D O I
10.1007/s11075-012-9588-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from the function values on the roots of Jacobi polynomials, we construct a class of discrete de la Vall,e Poussin means, by approximating the Fourier coefficients with a Gauss-Jacobi quadrature rule. Unlike the Lagrange interpolation polynomials, the resulting algebraic polynomials are uniformly convergent in suitable spaces of continuous functions, the order of convergence being comparable with the best polynomial approximation. Moreover, in the four Chebyshev cases the discrete de la Vall,e Poussin means share the Lagrange interpolation property, which allows us to reduce the computational cost.
引用
收藏
页码:593 / 612
页数:20
相关论文
共 25 条
[1]  
[Anonymous], AMS C PUBBLICATIONS
[2]  
[Anonymous], 1958, Pac. J. Math.
[3]  
Capobianco M.R., 2007, E J APPROX, V13, P223
[4]  
Capobianco M.R., 2001, East J. Approx., V7, P417
[5]   Interpolating polynomial wavelets on [-1,1] [J].
Capobianco, MR ;
Themistoclakis, W .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2005, 23 (04) :353-374
[6]  
CHANILLO S, 1993, MEM AM MATH SOC, V102
[7]  
de la Vallee Poussin C-J, 1919, LECONS APPROXIMATION
[8]  
de la Vallee Poussin Ch.-J., 1970, LECONS APPROXIMATION, V2nd
[9]  
Ditzian Z., 1987, Springer Series in Computational Mathematics
[10]  
Filbir F, 2004, J COMPUT ANAL APPL, V6, P297