Computationally efficient maximum likelihood estimation of structured covariance matrices

被引:124
作者
Li, HB [1 ]
Stoica, P
Li, J
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[2] Uppsala Univ, Syst & Control Grp, Uppsala, Sweden
基金
美国国家科学基金会;
关键词
D O I
10.1109/78.757219
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
By invoking the extended invariance principle (EXIP), we present herein a computationally efficient method that provides asymptotic (for large samples) maximum likelihood (AML) estimation for structured covariance matrices and will be referred to as the AML algorithm. A closed-form formula for estimating Hermitian Toeplitz covariance matrices that makes AML computationally simpler than most existing Hermitian Toeplitz matrix estimation algorithms is derived. Although the AML covariance matrix estimator con be used in a variety of applications, we focus on array processing in this paper. Our simulation study shows that AML enhances the performances of angle estimation algorithms, such as MUSIC, by making them very close to the corresponding Cramer-Rao bound (CRB) for uncorrelated signals. Numerical comparisons with several structured and unstructured covariance matrix estimators are also presented.
引用
收藏
页码:1314 / 1323
页数:10
相关论文
共 50 条
[31]   Covariance Analysis of Maximum Likelihood Attitude Estimation [J].
Joanna C. Hinks ;
John L. Crassidis .
The Journal of the Astronautical Sciences, 2013, 60 :186-210
[32]   Covariance Analysis of Maximum Likelihood Attitude Estimation [J].
Hinks, Joanna C. ;
Crassidis, John L. .
JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2013, 60 (02) :186-210
[33]   MAXIMUM LIKELIHOOD ESTIMATION OF MULTIVARIATE COVARIANCE COMPONENTS [J].
KLOTZ, J ;
PUTTER, J .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (04) :1363-&
[34]   Maximum Likelihood Estimation of Spatial Covariance Parameters [J].
Eulogio Pardo-Igúzquiza .
Mathematical Geology, 1998, 30 :95-108
[35]   Reliable and computationally efficient maximum-likelihood estimation of "proper" binormal ROC curves [J].
Pesce, Lorenzo L. ;
Metz, Charles E. .
ACADEMIC RADIOLOGY, 2007, 14 (07) :814-829
[36]   Computationally Efficient Maximum Likelihood Channel Estimation for Coarsely Quantized Massive MIMO Systems [J].
Liu, Fangqing ;
Shang, Xiaolei ;
Cheng, Yuanbo ;
Zhang, Guoyang .
IEEE COMMUNICATIONS LETTERS, 2022, 26 (02) :444-448
[37]   ESTIMATION OF STRUCTURED COVARIANCE MATRICES FOR TOMOSAR FOCUSING [J].
Martin-del-Campo-Becerra, Gustavo Daniel ;
Torres-Garcia, Eduardo ;
Nannini, Matteo ;
Reigber, Andreas ;
Torres-Roman, Deni Librado .
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, :7937-7940
[38]   Maximum likelihood estimation of inflation factors on error covariance matrices for ensemble Kalman filter assimilation [J].
Liang, Xiao ;
Zheng, Xiaogu ;
Zhang, Shupeng ;
Wu, Guocan ;
Dai, Yongjiu ;
Li, Yong .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2012, 138 (662) :263-273
[39]   Two New Algorithms for Maximum Likelihood Estimation of Sparse Covariance Matrices With Applications to Graphical Modeling [J].
Fatima, Ghania ;
Babu, Prabhu ;
Stoica, Petre .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 :958-971
[40]   EXPLICIT MAXIMUM LIKELIHOOD ESTIMATORS FOR CERTAIN PATTERNED COVARIANCE MATRICES [J].
ROGERS, GS ;
YOUNG, DL .
COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1977, 6 (02) :121-133