HETERODIMENSIONAL TANGENCIES ON CYCLES LEADING TO STRANGE ATTRACTORS

被引:5
作者
Kiriki, Shin [1 ]
Nishizawa, Yusuke [2 ]
Soma, Teruhiko [2 ]
机构
[1] Kyoto Univ Educ, Dept Math, Fushimi Ku, Kyoto 6128522, Japan
[2] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Tokyo 1920397, Japan
关键词
heterodimensional cycles; homoclinic tangencies; strange attractors; robust tangencies; HOMOCLINIC TANGENCIES; DIFFEOMORPHISMS; DYNAMICS; BIFURCATION;
D O I
10.3934/dcds.2010.27.285
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a two-parameter family {phi(mu,nu)} of three dimensional diffeomorphisms which have a bifurcation induced by simultaneous generation of a heterodimensional cycle and a heterodimensional tangency associated to two saddle points. We show that such a codimension-2 bifurcation generates a quadratic homoclinic tangency associated to one of the saddle continuations which unfolds generically with respect to some one-parameter sub-family of{phi(mu,nu)}. Moreover, from this result together with some well-known facts, we detect some nonhyperbolic phenomena (i.e., the existence of nonhyperbolic strange attractors and the C-2 robust tangencies) arbitrarily close to the codimension-2 bifurcation.
引用
收藏
页码:285 / 300
页数:16
相关论文
共 21 条
[1]   Periodic points and homoclinic classes [J].
Abdenur, F. ;
Bonatti, Ch. ;
Crovisier, S. ;
Diaz, L. J. ;
Wen, L. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :1-22
[2]  
Asaoka M, 2008, P AM MATH SOC, V136, P677
[3]   A C1-generic dichotomy for diffeomorphisms:: Weak forms of hyperbolicity or infinitely many sinks or sources [J].
Bonatti, C ;
Díaz, LJ ;
Pujals, ER .
ANNALS OF MATHEMATICS, 2003, 158 (02) :355-418
[4]   Robust heterodimensional cycles and C1-generic dynamics [J].
Bonatti, Christian ;
Diaz, Lorenzo J. .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2008, 7 (03) :469-525
[5]  
Bonatti PC, 1999, ANN SCI ECOLE NORM S, V32, P135
[6]   Heterodimensional tangencies [J].
Diaz, L. J. ;
Nogueira, A. ;
Pujals, E. R. .
NONLINEARITY, 2006, 19 (11) :2543-2566
[7]   NONCONNECTED HETERODIMENSIONAL CYCLES - BIFURCATION AND STABILITY [J].
DIAZ, LJ ;
ROCHA, J .
NONLINEARITY, 1992, 5 (06) :1315-1341
[8]   ROBUST NONHYPERBOLIC DYNAMICS AND HETERODIMENSIONAL CYCLES [J].
DIAZ, LJ .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :291-315
[9]   Large measure of hyperbolic dynamics when unfolding heteroclinic cycles [J].
Diaz, LJ ;
Rocha, J .
NONLINEARITY, 1997, 10 (04) :857-884
[10]  
Díaz LJ, 2001, ERGOD THEOR DYN SYST, V21, P25