Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system

被引:88
|
作者
Cieslak, Tomasz [2 ]
Laurencot, Philippe [1 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, CNRS, UMR 5219, F-31062 Toulouse 9, France
[2] Warsaw Univ, Inst Appl Math, PL-02097 Warsaw, Poland
关键词
DIFFUSION; EXISTENCE; MODEL;
D O I
10.1016/j.anihpc.2009.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finite time blow-up is shown to occur for solutions to a one-dimensional quasilinear parabolic-parabolic chemotaxis system as soon as the mean value of the initial condition exceeds some threshold value. The proof combines a novel identity of virial type with the boundedness from below of the Liapunov functional associated to the system, the latter being peculiar to the one-dimensional setting. (C) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:437 / 446
页数:10
相关论文
共 50 条
  • [41] Global existence and blow-up for a quasilinear parabolic system with localized sources
    Liu X.
    Afrika Matematika, 2013, 24 (4) : 589 - 595
  • [42] Blow-up for a double degenerate quasilinear parabolic equation
    Peng, Congming
    Yang, Zuodong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (10) : 2314 - 2324
  • [43] Behavior of blow-up solutions for quasilinear parabolic equations
    Yevgenieva Y.A.
    Journal of Mathematical Sciences, 2020, 249 (5) : 804 - 816
  • [44] Finite-Time Blow-up in a Quasilinear Degenerate Chemotaxis System with Flux Limitation
    Chiyoda, Yuka
    Mizukami, Masaaki
    Yokota, Tomomi
    ACTA APPLICANDAE MATHEMATICAE, 2020, 167 (01) : 231 - 259
  • [45] FINITE-TIME BLOW-UP IN A QUASILINEAR CHEMOTAXIS SYSTEM WITH AN EXTERNAL SIGNAL CONSUMPTION
    Zheng, Pan
    Mu, Chunlai
    Hu, Xuegang
    Wang, Liangchen
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 53 (01) : 25 - 41
  • [46] Finite-Time Blow-up in a Quasilinear Degenerate Chemotaxis System with Flux Limitation
    Yuka Chiyoda
    Masaaki Mizukami
    Tomomi Yokota
    Acta Applicandae Mathematicae, 2020, 167 : 231 - 259
  • [47] A QUASILINEAR PARABOLIC-PARABOLIC CHEMOTAXIS MODEL WITH LOGISTIC SOURCE AND SINGULAR SENSITIVITY
    Zhao, Jie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (06): : 3487 - 3513
  • [48] ON THE BLOW-UP TIME OF A PARABOLIC SYSTEM WITH DAMPING TERMS
    Viglialoro, Giuseppe
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2014, 67 (09): : 1223 - 1232
  • [49] Global existence and finite time blow-up for a parabolic system on hyperbolic space
    Wu, Hui
    Yang, Xiaoping
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
  • [50] Finite Time Blow-up of Parabolic Systems with Nonlocal Terms
    Li, Fang
    Yip, Nung Kwan
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (03) : 783 - 829