Stability of LiF Crystal in the Warm Dense Matter State

被引:40
作者
Stegailov, V. V. [1 ,2 ]
机构
[1] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia
[2] State Univ, Moscow Inst Phys & Technol, Dolgopruny 141700, Moscow Reg, Russia
关键词
Lithium fluoride; warm dense matter; non-thermal melting; INITIO MOLECULAR-DYNAMICS; TRANSITION; ELECTRONS; SILICON;
D O I
10.1002/ctpp.201010008
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The finite temperature density functional theory approach is deployed for the description of the fee LiF crystal in a two-temperature warm dense matter state with hot electrons and cold lattice that is formed after ultrafast energy deposition. The lattice stability and the interatomic bonding at elevated electronic temperatures are studied. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim
引用
收藏
页码:31 / 34
页数:4
相关论文
共 50 条
  • [11] Warm dense matter research at HIAF
    Cheng, Rui
    Lei, Yu
    Zhou, Xianming
    Wang, Yuyu
    Chen, Yanhong
    Zhao, Yongtao
    Ren, Jieru
    Sheng, Lina
    Yang, Jiancheng
    Zhang, Zimin
    Du, Yingchao
    Gai, Wei
    Ma, Xinwen
    Xiao, Guoqing
    MATTER AND RADIATION AT EXTREMES, 2018, 3 (02) : 85 - 93
  • [12] Investigation on equation of state and ionization equilibrium for aluminum in warm dense matter regime
    Wang Tian-Hao
    Wang Kun
    Zhang Yue
    Jiang Lin-Cun
    ACTA PHYSICA SINICA, 2020, 69 (09)
  • [13] Shock physics in warm dense matter: A quantum hydrodynamics perspective
    Graziani, F.
    Moldabekov, Z.
    Olson, B.
    Bonitz, M.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2022, 62 (02)
  • [14] Modelling the scattering of X-rays in warm dense matter
    Gericke, D. O.
    Wuensch, K.
    Vorberger, J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 606 (1-2) : 142 - 145
  • [15] Theory and simulation of warm dense matter targets
    Barnard, J. J.
    Armijo, J.
    More, R. M.
    Friedman, A.
    Kaganovich, I.
    Logan, B. G.
    Marinak, M. M.
    Penn, G. E.
    Sefkow, A. B.
    Santhanam, P.
    Stoltz, P.
    Veitzer, S.
    Wurtele, J. S.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 577 (1-2) : 275 - 283
  • [16] Dynamic and transient processes in warm dense matter
    White, Thomas G.
    Dai, Jiayu
    Riley, David
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2253):
  • [17] Experimental methods for warm dense matter research
    Katerina Falk
    High Power Laser Science and Engineering, 2018, 6 (04) : 69 - 90
  • [18] Experimental methods for warm dense matter research
    Falk, Katerina
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2018, 6
  • [19] Stopping power of a heterogeneous warm dense matter
    Casas, D.
    Andreev, A. A.
    Schnuerer, M.
    Barriga-Carrasco, M. D.
    Morales, R.
    Gonzalez-Gallego, L.
    LASER AND PARTICLE BEAMS, 2016, 34 (02) : 306 - 314
  • [20] Atomistic Modelling and Simulation of Warm Dense Matter. Conductivity and Reflectivity
    Norman, G.
    Saitov, I.
    Stegailov, V.
    Zhilyaev, P.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2013, 53 (4-5) : 300 - 310