Adversarial Multimodal Representation Learning for Click-Through Rate Prediction

被引:32
|
作者
Li, Xiang [1 ,2 ]
Wang, Chao [1 ,2 ]
Tan, Jiwei [1 ,2 ]
Zeng, Xiaoyi [1 ,2 ]
Ou, Dan [1 ,2 ]
Zheng, Bo [1 ,2 ]
机构
[1] Alibaba Grp, Hangzhou, Peoples R China
[2] Alibaba Grp, Beijing, Peoples R China
来源
WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020) | 2020年
关键词
multimodal learning; adversarial learning; recurrent neural network; attention; representation learning; e-commerce search;
D O I
10.1145/3366423.3380163
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.
引用
收藏
页码:827 / 836
页数:10
相关论文
共 50 条
  • [21] Deep Interest Network for Click-Through Rate Prediction
    Zhou, Guorui
    Zhu, Xiaoqiang
    Song, Chengru
    Fan, Ying
    Zhu, Han
    Ma, Xiao
    Yan, Yanghui
    Jin, Junqi
    Li, Han
    Gai, Kun
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1059 - 1068
  • [22] Interpretable Click-Through Rate Prediction through Hierarchical Attention
    Li, Zeyu
    Cheng, Wei
    Chen, Yang
    Chen, Haifeng
    Wang, Wei
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 313 - 321
  • [23] Core Interest Network for Click-Through Rate Prediction
    Xu, En
    Yu, Zhiwen
    Guo, Bin
    Cui, Helei
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (02)
  • [24] Dimension Relation Modeling for Click-Through Rate Prediction
    Zhao, Zihao
    Fang, Zhiwei
    Li, Yong
    Peng, Changping
    Bao, Yongjun
    Yan, Weipeng
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2333 - 2336
  • [25] Sparse Factorization Machines for Click-through Rate Prediction
    Pan, Zhen
    Chen, Enhong
    Liu, Qi
    Xu, Tong
    Ma, Haiping
    Lin, Hongjie
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 400 - 409
  • [26] User Behavior Retrieval for Click-Through Rate Prediction
    Qin, Jiarui
    Zhang, Weinan
    Wu, Xin
    Jin, Jiarui
    Fang, Yuchen
    Yu, Yong
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 2347 - 2356
  • [27] Click-through Rate Prediction and Uncertainty Quantification Based on Bayesian Deep Learning
    Wang, Xiaowei
    Dong, Hongbin
    ENTROPY, 2023, 25 (03)
  • [28] Deep Pattern Network for Click-Through Rate Prediction
    Zhang, Hengyu
    Pan, Junwei
    Liu, Dapeng
    Jiang, Jie
    Li, Xiu
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 1189 - 1199
  • [29] Click-Through Rate Prediction with the User Memory Network
    Ouyang, Wentao
    Zhang, Xiuwu
    Ren, Shukui
    Li, Li
    Liu, Zhaojie
    Du, Yanlong
    1ST INTERNATIONAL WORKSHOP ON DEEP LEARNING PRACTICE FOR HIGH-DIMENSIONAL SPARSE DATA WITH KDD (DLP-KDD 2019), 2019,
  • [30] A Simple and Robust Ensemble For Click-Through Rate Prediction
    Wang, Xingmei
    Wang, Yankai
    Lian, Defu
    PROCEEDINGS OF WORKSHOP ON THE RECSYS CHALLENGE 2023, RECSYSCHALLENGE 2023, 2023, : 14 - 17