First order formulation of the Yang-Mills theory in a background field

被引:3
作者
Brandt, F. T. [1 ]
Frenkel, J. [1 ]
McKeon, D. G. C. [2 ,3 ]
机构
[1] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
[3] Algoma Univ, Dept Math & Comp Sci, Sault Ste Marie, ON P6A 2G4, Canada
基金
巴西圣保罗研究基金会;
关键词
Gauge theories; Background gauge renormalization; RENORMALIZATION; GAUGE; REGULARIZATION; MODEL;
D O I
10.1016/j.aop.2019.167932
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The background gauge renormalization of the first order formulation of the Yang-Mills theory is studied by using the BRST identities. Together with the background symmetry, these identities allow for an iterative proof of renormalizability to all orders in perturbation theory. However, due to the fact that certain improper diagrams which violate the BRST symmetry should be removed, the renormalizability must be deduced indirectly. The recursive method involves rescalings and mixings of the fields, which lead to a renormalized effective action for the background field theory. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 33 条
[1]   THE BACKGROUND FIELD METHOD AND THE S-MATRIX [J].
ABBOTT, LF ;
GRISARU, MT ;
SCHAEFER, RK .
NUCLEAR PHYSICS B, 1983, 229 (02) :372-380
[2]   THE BACKGROUND FIELD METHOD BEYOND ONE LOOP [J].
ABBOTT, LF .
NUCLEAR PHYSICS B, 1981, 185 (01) :189-203
[3]  
ABBOTT LF, 1982, ACTA PHYS POL B, V13, P33
[4]   Renormalization of Hamiltonian QCD [J].
Andrasi, A. ;
Taylor, John C. .
ANNALS OF PHYSICS, 2009, 324 (10) :2179-2195
[5]  
[Anonymous], 1975, Lect. Notes Phys, DOI DOI 10.1007/3-540-07160-1_1
[6]  
Arnowitt R, 2008, GEN RELAT GRAVIT, V40, P1997, DOI 10.1007/s10714-008-0661-1
[7]   Renormalization of gauge theories in the background-field approach [J].
Barvinsky, Andrei O. ;
Blas, Diego ;
Herrero-Valea, Mario ;
Sibiryakov, Sergey M. ;
Steinwachs, Christian F. .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07)
[8]   Multiplicative renormalization of Yang-Mills theories in the background-field formalism [J].
Batalin, Igor A. ;
Lavrov, Peter M. ;
Tyutin, Igor V. .
EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (07)
[9]   ABELIAN HIGGS KIBBLE MODEL, UNITARITY OF S-OPERATOR [J].
BECCHI, C ;
ROUET, A ;
STORA, R .
PHYSICS LETTERS B, 1974, B 52 (03) :344-346
[10]   Renormalization of six-dimensional Yang-Mills theory in a background gauge field [J].
Brandt, F. T. ;
Frenkel, J. ;
McKeon, D. G. C. .
PHYSICAL REVIEW D, 2019, 99 (02)