Adaptive Deep Convolutional Neural Networks for Scene-Specific Object Detection

被引:32
|
作者
Li, Xudong [1 ]
Ye, Mao [1 ]
Liu, Yiguang [2 ]
Zhu, Ce [3 ,4 ]
机构
[1] Univ Elect Sci & Technol China, Minist Educ, Sch Comp Sci & Engn, Ctr Robot,Key Lab NeuroInformat, Chengdu 611731, Sichuan, Peoples R China
[2] Sichuan Univ, Sch Comp Sci, Vis & Image Proc Lab, Chengdu 610065, Sichuan, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu 611731, Sichuan, Peoples R China
[4] Univ Elect Sci & Technol China, Ctr Robot, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network; object detection; surveillance scene; FRAMEWORK;
D O I
10.1109/TCSVT.2017.2749620
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A deep convolutional neural network (CNN) becomes a widely used tool for object detection. Many previous works have achieved excellent performance on object detection benchmarks. However, these works present generic detectors whose performance will drop rapidly when they are applied to a surveillance scene. In this paper, we propose an efficient method to construct a scene-specific regression model based on a generic CNN-based classifier. Our regression model is an adaptive deep CNN (ADCNN), which can predict object locations in the surveillance scene. First, we transfer the generic CNN-based classifier to the surveillance scene by selecting useful kernels. Second, we learn the context information of the surveillance scene in our regression model for accurate location prediction. Our main contributions are: 1) a transfer learning method that selects useful kernels in the generic CNN-based classifier; 2) a special architecture that can effectively learn the local and global context information in the surveillance scene; and 3) a new objective function to effectively train parameters in ADCNN. Compared with some state-of-the-art models, ADCNN achieves the best performance on three surveillance data sets for pedestrian detection and one surveillance data set for vehicle detection.
引用
收藏
页码:2538 / 2551
页数:14
相关论文
共 50 条
  • [41] Detection of pneumonia using convolutional neural networks and deep learning
    Szepesi, Patrik
    Szilagyi, Laszlo
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (03) : 1012 - 1022
  • [42] Automatic Detection of Melanoma with Yolo Deep Convolutional Neural Networks
    Nie, Yali
    Sommella, Paolo
    O'Nils, Mattias
    Liguori, Consolatina
    Lundgren, Jan
    2019 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2019,
  • [43] Neonatal Seizure Detection Using Deep Convolutional Neural Networks
    Ansari, Amir H.
    Cherian, Perumpillichira J.
    Caicedo, Alexander
    Naulaers, Gunnar
    De Vos, Maarten
    Van Huffel, Sabine
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2019, 29 (04)
  • [44] Survey of target detection based on deep convolutional neural networks
    Fan L.-L.
    Zhao H.-W.
    Zhao H.-Y.
    Hu H.-S.
    Wang Z.
    Zhao, Hao-Yu (zhaohaoyu@jlu.edu.cn), 1600, Chinese Academy of Sciences (28): : 1152 - 1164
  • [45] Multiorgan structures detection using deep convolutional neural networks
    Onieva, Jorge Onieva
    Serrano, German Gonzalez
    Young, Thomas P.
    Washko, George R.
    Ledesma Carbayo, Maria Jesus
    Estepar, Raul San Jose
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [46] "Texting & Driving" Detection Using Deep Convolutional Neural Networks
    Maria Celaya-Padilla, Jose
    Eric Galvan-Tejada, Carlos
    Anaid Lozano-Aguilar, Joyce Selene
    Alejandra Zanella-Calzada, Laura
    Luna-Garcia, Huizilopoztli
    Issac Galvan-Tejada, Jorge
    Karina Gamboa-Rosales, Nadia
    Velez Rodriguez, Alberto
    Gamboa-Rosales, Hamurabi
    APPLIED SCIENCES-BASEL, 2019, 9 (15):
  • [47] Artifact Detection in Endoscopic Video with Deep Convolutional Neural Networks
    Zhang, Chenxi
    Zhang, Ning
    Wang, Dechun
    Cao, Yu
    Liu, Benyuan
    2020 SECOND INTERNATIONAL CONFERENCE ON TRANSDISCIPLINARY AI (TRANSAI 2020), 2020, : 1 - 8
  • [48] Object Detection by a Super-Resolution Method and a Convolutional Neural Networks
    Na, Bokyoon
    Fox, Geoffrey C.
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 2263 - 2269
  • [49] Do deep convolutional neural networks really need to be deep when applied for remote scene classification?
    Luo, Chang
    Wang, Jie
    Feng, Gang
    Xu, Suhui
    Wang, Shiqiang
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [50] Automatic and Robust Object Detection in X-Ray Baggage Inspection Using Deep Convolutional Neural Networks
    Gu, Bangzhong
    Ge, Rongjun
    Chen, Yang
    Luo, Limin
    Coatrieux, Gouenou
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (10) : 10248 - 10257