Adaptive Deep Convolutional Neural Networks for Scene-Specific Object Detection

被引:32
|
作者
Li, Xudong [1 ]
Ye, Mao [1 ]
Liu, Yiguang [2 ]
Zhu, Ce [3 ,4 ]
机构
[1] Univ Elect Sci & Technol China, Minist Educ, Sch Comp Sci & Engn, Ctr Robot,Key Lab NeuroInformat, Chengdu 611731, Sichuan, Peoples R China
[2] Sichuan Univ, Sch Comp Sci, Vis & Image Proc Lab, Chengdu 610065, Sichuan, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu 611731, Sichuan, Peoples R China
[4] Univ Elect Sci & Technol China, Ctr Robot, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network; object detection; surveillance scene; FRAMEWORK;
D O I
10.1109/TCSVT.2017.2749620
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A deep convolutional neural network (CNN) becomes a widely used tool for object detection. Many previous works have achieved excellent performance on object detection benchmarks. However, these works present generic detectors whose performance will drop rapidly when they are applied to a surveillance scene. In this paper, we propose an efficient method to construct a scene-specific regression model based on a generic CNN-based classifier. Our regression model is an adaptive deep CNN (ADCNN), which can predict object locations in the surveillance scene. First, we transfer the generic CNN-based classifier to the surveillance scene by selecting useful kernels. Second, we learn the context information of the surveillance scene in our regression model for accurate location prediction. Our main contributions are: 1) a transfer learning method that selects useful kernels in the generic CNN-based classifier; 2) a special architecture that can effectively learn the local and global context information in the surveillance scene; and 3) a new objective function to effectively train parameters in ADCNN. Compared with some state-of-the-art models, ADCNN achieves the best performance on three surveillance data sets for pedestrian detection and one surveillance data set for vehicle detection.
引用
收藏
页码:2538 / 2551
页数:14
相关论文
共 50 条
  • [1] Specialized Indoor and Outdoor Scene-specific Object Detection Models
    Jamali, Mahtab
    Davidsson, Paul
    Khoshkangini, Reza
    Ljungqvist, Martin Georg
    Mihailescu, Radu-Casian
    SIXTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION, ICMV 2023, 2024, 13072
  • [2] Object Detection Using Deep Convolutional Neural Networks
    Qian, Huimin
    Xu, Jiawei
    Zhou, Jun
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1151 - 1156
  • [3] A New Method Based on Deep Convolutional Neural Networks for Object Detection and Classification
    Yan Liu
    Zhu Zhuxngjie
    Zhang, Qiuhui
    Ding, Xiaotian
    Wang, Ruonan
    Han, Senyao
    Chi Li
    AATCC JOURNAL OF RESEARCH, 2021, 8 : 37 - 45
  • [4] Object Detection and Depth Estimation Approach Based on Deep Convolutional Neural Networks
    Wang, Huai-Mu
    Lin, Huei-Yung
    Chang, Chin-Chen
    SENSORS, 2021, 21 (14)
  • [5] A New Method Based on Deep Convolutional Neural Networks for Object Detection and Classification
    Liu, Yan
    Zhuxngjie, Zhu
    Zhang, Qiuhui
    Ding, Xiaotian
    Wang, Ruonan
    Han, Senyao
    Li, Chi
    AATCC JOURNAL OF RESEARCH, 2021, 8 (1_SUPPL) : 38 - 46
  • [6] A Review on Object Detection Based on Deep Convolutional Neural Networks for Autonomous Driving
    Lu, Jialin
    Tang, Shuming
    Wang, Jinqiao
    Zhu, Haibing
    Wang, Yunkuan
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 5301 - 5308
  • [7] Parallel Convolutional Neural Networks for Object Detection
    Olugboja, Adedeji
    Wang, Zenghui
    Sun, Yanxia
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2021, 12 (04) : 279 - 286
  • [8] Object Detection Using Convolutional Neural Networks
    Galvez, Reagan L.
    Bandala, Argel A.
    Dadios, Elmer P.
    Vicerra, Ryan Rhay P.
    Maningo, Jose Martin Z.
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 2023 - 2027
  • [9] PROVABLE TRANSLATIONAL ROBUSTNESS FOR OBJECT DETECTION WITH CONVOLUTIONAL NEURAL NETWORKS
    Vierling, Axel
    James, Charu
    Berns, Karsten
    Katsaouni, Nikoletta
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 694 - 698
  • [10] Outdoor Scene Labeling Using Deep Convolutional Neural Networks
    Wen Jun
    Zhong Chaolliang
    Liu Shirong
    Wang Jian
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 3953 - 3958