Pressure-Induced Enhancement of Thermoelectric Figure of Merit and Structural Phase Transition in TiNiSn

被引:13
|
作者
Baker, Jason L. [1 ]
Park, Changyong [2 ]
Kenney-Benson, Curtis [2 ]
Sharma, Vineet Kumar [3 ]
Kanchana, V [3 ]
Vaitheeswaran, G. [4 ]
Pickard, Chris J. [5 ]
Cornelius, Andrew [6 ]
Velisavljevic, Nenad [2 ,7 ]
Kumar, Ravhi S. [6 ,8 ]
机构
[1] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA
[2] Argonne Natl Lab, High Pressure Collaborat Access Team, Xray Sci Div, Argonne, IL 60439 USA
[3] Indian Inst Technol Hyderabad, Dept Phys, Kandi Sanga Reddy 502285, Telengana, India
[4] Univ Hyderabad, Sch Phys, Hyderabad 500046, Telengana, India
[5] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[6] Univ Nevada, Dept Phys, Las Vegas, NV 89054 USA
[7] Lawrence Livermore Natl Lab, Phys Div, Livermore, CA 94550 USA
[8] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2021年 / 12卷 / 03期
关键词
D O I
10.1021/acs.jpclett.0c03609
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Half-Heusler thermoelectric materials are potential candidates for high thermoelectric efficiency. We report high-pressure thermoelectric and structural property measurements, density functional theory calculations on the half-Heusler material TiNiSn, and an increase of 15% in the relative dimensionless figure of merit, ZT, around 3 GPa. Thermal and electrical properties were measured utilizing a specialized sample cell assembly designed for the Paris-Edinburgh large-volume press to a maximum pressure of 3.5 GPa. High-pressure structural measurements performed up to 50 GPa in a diamond-anvil cell indicated the emergence of a new high-pressure phase around 20 GPa. A first-principles structure search performed using an ab initio random structure search approach identified the high-pressure phase as an orthorhombic type, in good agreement with the experimental results.
引用
收藏
页码:1046 / 1051
页数:6
相关论文
共 50 条
  • [1] Pressure-induced enhancement of thermoelectric performance of CoP3 by the structural phase transition
    Zhang, Ao
    Cui, Yangfan
    Yue, Jincheng
    Li, Junda
    Pan, Yilong
    Chen, Xin
    Liu, Yanhui
    Cui, Tian
    ACTA MATERIALIA, 2023, 248
  • [2] Pressure-induced structural phase transition in RbAu
    Yu, Z. H.
    Li, C. Y.
    Liu, H. Z.
    PHYSICA B-CONDENSED MATTER, 2012, 407 (04) : 805 - 807
  • [3] Pressure-induced structural phase transition in BaHCl
    Ubukata, Hiroki
    Ishida, Kohdai
    Higo, Yuji
    Tange, Yoshinori
    Broux, Thibault
    Tassel, Cedric
    Kageyama, Hiroshi
    JOURNAL OF SOLID STATE CHEMISTRY, 2022, 312
  • [4] Pressure-induced structural phase transition in iron phosphide
    Yan, Haiyan
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 107 : 204 - 209
  • [5] PRESSURE-INDUCED STRUCTURAL PHASE-TRANSITION OF IODINE
    TAKEMURA, K
    FUJII, Y
    MINOMURA, S
    SOLID STATE COMMUNICATIONS, 1979, 30 (03) : 137 - 139
  • [6] Structural transformation and pressure-induced phase transition in PZT
    Rouquette, J
    Bornand, V
    Haines, J
    Papet, P
    Gorelli, F
    INTEGRATED FERROELECTRICS, 2002, 48 : 53 - 58
  • [7] Pressure-induced structural phase transition in a ferromagnet CrTe
    Eto, T
    Iskizuka, M
    Endo, S
    Kanomata, T
    Kikegawa, T
    JOURNAL OF ALLOYS AND COMPOUNDS, 2001, 315 (1-2) : 16 - 21
  • [8] Enhancement of thermoelectric figure of merit in bismuth nanotubes
    Zhou, G.
    Li, L.
    Li, G. H.
    APPLIED PHYSICS LETTERS, 2010, 97 (02)
  • [9] Pressure-induced structural phase transition of paracrystalline silicon
    Durandurdu, M
    Drabold, DA
    PHYSICAL REVIEW B, 2002, 66 (20) : 2052041 - 2052046
  • [10] Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides
    Brown, David R.
    Day, Tristan
    Borup, Kasper A.
    Christensen, Sebastian
    Iversen, Bo B.
    Snyder, G. Jeffrey
    APL MATERIALS, 2013, 1 (05):