Periodic resolutions over exterior algebras

被引:12
|
作者
Eisenbud, D [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0021-8693(02)00511-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study modules with periodic free resolutions (that is, periodic modules) over an exterior algebra. We show that any module with bounded Betti numbers (that is, a module whose syzygy modules have a bounded number of generators) must have periodic free resolution of period less than or equal to 2, and that for graded modules the period is 1. We also show that any module with a linear Tate resolution is periodic. We give a criterion of exactness for periodic complexes and a parameterization of the set of periodic modules. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:348 / 361
页数:14
相关论文
共 50 条