Colloidal Atomic Layer Deposition with Stationary Reactant Phases Enables Precise Synthesis of "Digital" II-VI Nano-heterostructures with Exquisite Control of Confinement and Strain

被引:66
作者
Hazarika, Abhijit [1 ,2 ]
Fedin, Igor [1 ,2 ]
Hong, Liang [3 ]
Guo, Jinglong [3 ]
Srivastava, Vishwas [1 ,2 ]
Cho, Wooje [1 ,2 ]
Coropceanu, Igor [1 ,2 ]
Portner, Joshua [1 ,2 ]
Diroll, Benjamin T. [4 ]
Philbin, John P. [5 ]
Rabani, Eran [5 ,6 ,7 ]
Klie, Robert [3 ]
Talapin, Dmitri V. [1 ,2 ,4 ]
机构
[1] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA
[2] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[3] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[4] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
[5] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[6] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[7] Tel Aviv Univ, Sackler Ctr Computat Mol & Mat Sci, IL-69978 Tel Aviv, Israel
关键词
SEMICONDUCTOR NANOCRYSTALS; ELECTRONIC-STRUCTURE; KINETICS; SIZE; NANOPLATELETS; NANOPARTICLES; ADSORPTION; EVOLUTION; GROWTH; FILMS;
D O I
10.1021/jacs.9b04866
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In contrast to molecular systems, which are defined with atomic precision, nanomaterials generally show some heterogeneity in size, shape, and composition. The sample inhomogeneity translates into a distribution of energy levels, band gaps, work functions, and other characteristics, which detrimentally affect practically every property of functional nanomaterials. We discuss a novel synthetic strategy, colloidal atomic layer deposition (c-ALD) with stationary reactant phases, which largely circumvents the limitations of traditional colloidal syntheses of nano-heterostructures with atomic precision. This approach allows for significant reduction of inhomogeneity in nanomaterials in complex nanostructures without compromising their structural perfection and enables the synthesis of epitaxial nano-heterostructures of unprecedented complexity. The improved synthetic control ultimately enables bandgap and strain engineering in colloidal nanomaterials with close to atomic accuracy. To demonstrate the power of the new c-ALD method, we synthesize a library of complex II-VI semiconductor nanoplatelet heterostructures. By combining spectroscopic and computational studies, we elucidate the subtle interplay between quantum confinement and strain effects on the optical properties of semiconductor nanostructures.
引用
收藏
页码:13487 / 13496
页数:10
相关论文
共 41 条
[31]   Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "Focusing" of size distributions [J].
Peng, XG ;
Wickham, J ;
Alivisatos, AP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (21) :5343-5344
[32]   Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process [J].
Puurunen, RL .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (12)
[33]   Colloidal Synthesis of Monodisperse Semiconductor Nanocrystals through Saturated Ionic Layer Adsorption [J].
Razgoniaeva, Natalia ;
Carrillo, Luis ;
Burchfield, Douglas ;
Moroz, Pavel ;
Adhikari, Prakash ;
Yadav, Priyanka ;
Khon, Dmitriy ;
Zamkov, Mikhail .
CHEMISTRY OF MATERIALS, 2016, 28 (08) :2823-2833
[34]   HgSe/CdE (E = S, Se) Core/Shell Nanocrystals by Colloidal Atomic Layer Deposition [J].
Sagar, Laxmi Kishore ;
Walravens, Willem ;
Maes, Jorick ;
Geiregat, Pieter ;
Hens, Zeger .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (25) :13816-13822
[35]  
Singh J., 2003, ELECT OPTOELECTRONIC, DOI 10.1016/B978-044451734-0.50022-3
[36]   Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering [J].
Smith, Andrew M. ;
Nie, Shuming .
ACCOUNTS OF CHEMICAL RESEARCH, 2010, 43 (02) :190-200
[37]  
Smith AM, 2009, NAT NANOTECHNOL, V4, P56, DOI [10.1038/nnano.2008.360, 10.1038/NNANO.2008.360]
[38]   Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications [J].
Talapin, Dmitri V. ;
Lee, Jong-Soo ;
Kovalenko, Maksym V. ;
Shevchenko, Elena V. .
CHEMICAL REVIEWS, 2010, 110 (01) :389-458
[39]   Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study [J].
Talapin, DV ;
Rogach, AL ;
Haase, M ;
Weller, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (49) :12278-12285
[40]   Evolution of Colloidal Nanocrystals: Theory and Modeling of their Nucleation and Growth [J].
van Embden, Joel ;
Sader, John E. ;
Davidson, Malcolm ;
Mulvaney, Paul .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (37) :16342-16355