In Situ Induced Surface Reconstruction of Single-Crystal Lithium-Ion Cathode Toward Effective Interface Compatibility

被引:21
作者
Zhang, Qingqing [1 ]
Liu, Kai [1 ,4 ]
Li, Cheng [2 ]
Li, Lu [3 ]
Liu, Xingjiang [4 ]
Li, Wei [1 ]
Zhang, Jinli [1 ,5 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300350, Peoples R China
[2] Oak Ridge Natl Lab, Neutron Scattering Div, POB 2009, Oak Ridge, TN 37831 USA
[3] Guizhou Zhenhua New Mat Co Ltd, Guiyang 550016, Peoples R China
[4] Tianjin Inst Power Sources, Natl Key Lab Sci & Technol Power Sources, Tianjin 300384, Peoples R China
[5] Shihezi Univ, Sch Chem & Chem Engn, Shihezi 832003, Peoples R China
基金
中国国家自然科学基金;
关键词
in situ; single crystal; surface reconstruction; interface compatibility; lithium-ion batteries; ELECTROCHEMICAL PERFORMANCE; LINI0.8CO0.1MN0.1O2; STABILITY; ELECTRODE; LI2CO3; LINI0.5MN1.5O4; CAPACITY; STRATEGY; OXIDES;
D O I
10.1021/acsami.0c21973
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
LiNixCoyMn1-x-yO2 (x >= 0.5) layered oxide materials are generally considered as one of the most prospective candidates for lithium-ion battery (LIBs) cathodes due to their high specific capacity and working voltage. However, surface impurity species substantially degrade the electrochemical performance of LIBs. Herein, surface reconstruction from layered structure to disordered layer and rock-salt coherent region together with a uniform Li2CO3-dominant coating layer is first in situ constructed on the single-crystal LiNi0.5Co0.2Mn0.3O2 (NCM) material by a simple water treatment procedure. The unique surface structure is elucidated by Ar-sputtering-assisted X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (spherical aberration-corrected-scanning transmission electron microscopy (STEM), high-resolution transmission electron microscopy (HRTEM), and TEM). Meanwhile, neutron powder diffraction (NPD) indicates that the antisite defect concentration is mitigated in the treated materials. The modified samples display superior cycle stability with a capacity retention of up to 87.5% at 1C after 300 cycles, a high rate capacity of 151 mAh g(-1) at 5C, an elevated temperature (45 degrees C) cycling property with 80% capacity retention (4.5 V), and improved full-cell performance with 91% after 250 cycles at 1C. Importantly, postmortem examination on the cycled cathodes by time-of-flight secondary-ion mass spectroscopy (TOF-SIMS), XPS, TEM, and X-ray diffractometer (XRD) pattern further demonstrate that these results are mainly attributed to the thin cathode electrolyte interface (CEI) film and low solubility of transition-metal ions. Therefore, this expedition provides an opportunity to construct an effective armor for the interface compatibility and stability of LIBs.
引用
收藏
页码:13771 / 13780
页数:10
相关论文
共 50 条
[31]   Deep Surface Engineering Toward Stable Cycling of Single-Crystal Li-rich Mn-Based Cathode [J].
Yang, Cheng ;
Luo, Jiawei ;
Zhang, Jingchao ;
Cheng, Yan ;
Wang, Hui ;
Ge, Yunchen ;
Tong, Qilin ;
Tong, Jiali ;
Liu, Rui ;
Liu, Wei-Di ;
Chen, Yanan ;
Yu, Zhaozhe .
ADVANCED FUNCTIONAL MATERIALS, 2025,
[32]   The effect of Na doping on layered LiNi1/3Co1/3Mn1/3O2 single-crystal structure as a cathode for lithium-ion batteries [J].
Yu, Dongsheng ;
Li, Jili ;
Min, Zhiyu ;
Tang, Chunjuan ;
Meng, Peiguo ;
Chen, Baotai .
NANO FUTURES, 2022, 6 (04)
[33]   In Situ Conversion of Artificial Proton-Rich Shell to Inorganic Maskant Toward Stable Single-Crystal Ni-Rich Cathode [J].
Xue, Haoyu ;
Liang, Yongzhi ;
Huang, Yuxiang ;
Ji, Yuchen ;
Xu, Zhongxing ;
Chen, Xinhan ;
Wang, Honghao ;
Liu, Jiajie ;
Amine, Khalil ;
Liu, Tongchao ;
Tan, Xinghua ;
Pan, Feng .
ADVANCED MATERIALS, 2025, 37 (07)
[34]   Simultaneous B/W dual coating on ultra-high nickel single crystal cathode material for lithium-ion batteries [J].
Chu, Binbin ;
Xu, Ruoyu ;
Li, Guangxin ;
Chen, Jinyu ;
Xu, Zijian ;
Huang, Tao ;
Wang, Bo ;
Yu, Aishui .
JOURNAL OF POWER SOURCES, 2023, 577
[35]   Dual-functional boron-modification on a cobalt-free single-crystal layered cathode for high-voltage lithium-ion batteries [J].
Liu, Tiancheng ;
Fan, Ke ;
Lin, Zezhou ;
Liang, Zhuojian ;
Chen, Changsheng ;
Li, Guangchao ;
Guo, Xuyun ;
Zhu, Yanping ;
Chen, Gao ;
Li, Hao ;
Wu, Tai-Sing ;
Soo, Yun-Liang ;
Li, Molly Meng-Jung ;
Zhu, Ye ;
Dong, Mingxia ;
Huang, Haitao .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (33) :17810-17820
[36]   Crystal growth kinetics of single-crystal Ni-rich layered cathodes for high-energy lithium-ion batteries [J].
Li, Feng ;
Tian, Yu-hang ;
Ge, Lu-xia ;
Fan, Sheng-long ;
Gong, Mao-sheng ;
Fan, Ke ;
Hou, Pei-yu ;
Wei, Xian-qi .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2025, 35 (06) :1975-1986
[37]   Simultaneous Single Crystal Growth and Segregation of Ni-Rich Cathode Enabled by Nanoscale Phase Separation for Advanced Lithium-Ion Batteries [J].
Bi, Yujing ;
Xu, Yaobin ;
Yi, Ran ;
Liu, Dianying ;
Zuo, Peng ;
Hu, Jiangtao ;
Li, Qiuyan ;
Wu, Jing ;
Wang, Chongmin ;
Tan, Sha ;
Hu, Enyuan ;
Li, Jingnan ;
O'Toole, Rebecca ;
Luo, Liu ;
Hao, Xiaoguang ;
Venkatachalam, Subramanian ;
Rijssenbeek, Job ;
Xiao, Jie .
ENERGY STORAGE MATERIALS, 2023, 62
[38]   Regeneration of Single-Crystal LiNi0.5Co0.2Mn0.3O2 Cathode Materials from Spent Power Lithium-Ion Batteries [J].
Han, Yingqian ;
You, Yong ;
Hou, Chen ;
Xiao, Xiang ;
Xing, Yiran ;
Zhao, Yujuan .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (04)
[39]   A well-controlled cracks and gliding-free single-crystal Ni-rich cathode for long-cycle-life lithium-ion batteries [J].
Saleem, Adil ;
Hussain, Arshad ;
Ashfaq, M. Zeeshan ;
Javed, Muhammad Sufyan ;
Rauf, Sajid ;
Hussain, M. Muzammal ;
Saad, Ali ;
Shen, Jun ;
Majeed, Muhammad K. ;
Iqbal, Rashid .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 924
[40]   Single-Crystal Intermetallic M-Sn (M = Fe, Cu, Co, Ni) Nanospheres as Negative Electrodes for Lithium-Ion Batteries [J].
Wang, Xiao-Liang ;
Han, Wei-Qiang ;
Chen, Jiajun ;
Graetz, Jason .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (05) :1548-1551