Modeling Superhydrophobic Contact Angles and Wetting Transition

被引:87
作者
Gao, Nan [1 ]
Yan, Yuying [1 ]
机构
[1] Univ Nottingham, Fac Engn, DBE, Nottingham NG7 2RD, England
关键词
superhydrophobic surface; contact angle; wetting transition; energy balance; biomimetics; ROUGH SURFACES; LOTUS; DROPS; WATER; HYSTERESIS; STATES;
D O I
10.1016/S1672-6529(08)60135-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is well known that surface roughness has a very important effect on superhydrophobicity. The Wenzel and Cassie-Baxter models, which correspond to the homogeneous and heterogeneous wetting respectively, are currently primary instructions for designing superhydrophobic Surfaces. However, the particular drop shape that a drop exhibits might depend on how it is formed. A water drop can occupy multiple equilibrium states, which relate to different local minimal energy. In some cases, both equilibrium states can even co-exist on a same substrate. Thus the apparent contact angles may vary and have different values. We discuss how the Wenzel and Cassie-Baxter equations determine the homogeneous and heterogeneous wetting theoretically. Contact angle analysis on hierarchical surface structure and contact angle hysteresis has been put specific attention. In particular, we study the energy barrier of transition from Cassie-Baxter state to Wenzel state, based on existing achievement by previous researchers, to determine the possibility of the transition and how it can be interpreted. It has been demonstrated that surface roughness and geometry will influence the energy required for a drop to get into equilibrium, no matter it is homogeneous or heterogeneous wetting.
引用
收藏
页码:335 / 340
页数:6
相关论文
共 28 条
[1]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[2]   Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion [J].
Bhushan, Bharat ;
Jung, Yong Chae ;
Koch, Kerstin .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1894) :1631-1672
[3]   Pearl drops [J].
Bico, J ;
Marzolin, C ;
Quéré, D .
EUROPHYSICS LETTERS, 1999, 47 (02) :220-226
[4]   Wetting of textured surfaces [J].
Bico, J ;
Thiele, U ;
Quéré, D .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2002, 206 (1-3) :41-46
[5]   Self-cleaning surfaces - virtual realities [J].
Blossey, R .
NATURE MATERIALS, 2003, 2 (05) :301-306
[6]   Wettability of porous surfaces. [J].
Cassie, ABD ;
Baxter, S .
TRANSACTIONS OF THE FARADAY SOCIETY, 1944, 40 :0546-0550
[7]   Model for contact angles and hysteresis on rough and ultraphobic surfaces [J].
Extrand, CW .
LANGMUIR, 2002, 18 (21) :7991-7999
[8]   Petal effect: A superhydrophobic state with high adhesive force [J].
Feng, Lin ;
Zhang, Yanan ;
Xi, Jinming ;
Zhu, Ying ;
Wang, Nue ;
Xia, Fan ;
Jiang, Lei .
LANGMUIR, 2008, 24 (08) :4114-4119
[9]   The "lotus effect" explained: Two reasons why two length scales of topography are important [J].
Gao, LC ;
McCarthy, TJ .
LANGMUIR, 2006, 22 (07) :2966-2967
[10]   Contact angle hysteresis explained [J].
Gao, Lichao ;
McCarthy, Thomas J. .
LANGMUIR, 2006, 22 (14) :6234-6237