Large-scale zero-shot learning in the wild: Classifying zoological illustrations

被引:5
|
作者
Stork, Lise [1 ]
Weber, Andreas [2 ]
van den Herik, Jaap [1 ,3 ]
Plaat, Aske [1 ]
Verbeek, Fons [1 ]
Wolstencroft, Katherine [1 ]
机构
[1] Leiden Inst Adv Comp Sci, Niels Bohrweg 1, NL-2333 CA Leiden, Netherlands
[2] Univ Twente, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands
[3] Leiden Ctr Data Sci, Leiden, Netherlands
关键词
Zero-shot learning; Biodiversity; Natural history; Hierarchical learning; Fine-grained object recognition; Small samples; CLASSIFICATION;
D O I
10.1016/j.ecoinf.2021.101222
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
In this paper we analyse the classification of zoological illustrations. Historically, zoological illustrations were the modus operandi for the documentation of new species, and now serve as crucial sources for long-term ecological and biodiversity research. By employing computational methods for classification, the data can be made amenable to research. Automated species identification is challenging due to the long-tailed nature of the data, and the millions of possible classes in the species taxonomy. Success commonly depends on large training sets with many examples per class, but images from only a subset of classes are digitally available, and many images are unlabelled, since labelling requires domain expertise. We explore zero-shot learning to address the problem, where features are learned from classes with medium to large samples, which are then transferred to recognise classes with few or no training samples. We specifically explore how distributed, multi-modal background knowledge from data providers, such as the Global Biodiversity Information Facility (GBIF), iNaturalist, and the Biodiversity Heritage Library (BHL), can be used to share knowledge between classes for zero-shot learning. We train a prototypical network for zero-shot classification, and introduce fused prototypes (FP) and hierarchical prototype loss (HPL) to optimise the model. Finally, we analyse the performance of the model for use in real-world applications. The experimental results are encouraging, indicating potential for use of such models in an expert support system, but also express the difficulty of our task, showing a necessity for research into computer vision methods that are able to learn from small samples.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Research progress of zero-shot learning
    Xiaohong Sun
    Jinan Gu
    Hongying Sun
    Applied Intelligence, 2021, 51 : 3600 - 3614
  • [22] Zero-Shot Learning With Transferred Samples
    Guo, Yuchen
    Ding, Guiguang
    Han, Jungong
    Gao, Yue
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (07) : 3277 - 3290
  • [23] Research and Development on Zero-Shot Learning
    Zhang L.-N.
    Zuo X.
    Liu J.-W.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (01): : 1 - 23
  • [24] Towards Open Zero-Shot Learning
    Marmoreo, Federico
    Carrazco, Julio Ivan Davila
    Cavazza, Jacopo
    Murino, Vittorio
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT II, 2022, 13232 : 564 - 575
  • [25] Zero-Shot Classification of Art With Large Language Models
    Tojima, Tatsuya
    Yoshida, Mitsuo
    IEEE ACCESS, 2025, 13 : 17426 - 17439
  • [26] Variational Disentangle Zero-Shot Learning
    Su, Jie
    Wan, Jinhao
    Li, Taotao
    Li, Xiong
    Ye, Yuheng
    MATHEMATICS, 2023, 11 (16)
  • [27] Detecting Errors with Zero-Shot Learning
    Wu, Xiaoyu
    Wang, Ning
    ENTROPY, 2022, 24 (07)
  • [28] Prototype rectification for zero-shot learning
    Yi, Yuanyuan
    Zeng, Guolei
    Ren, Bocheng
    Yang, Laurence T.
    Chai, Bin
    Li, Yuxin
    PATTERN RECOGNITION, 2024, 156
  • [29] A review on multimodal zero-shot learning
    Cao, Weipeng
    Wu, Yuhao
    Sun, Yixuan
    Zhang, Haigang
    Ren, Jin
    Gu, Dujuan
    Wang, Xingkai
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (02)
  • [30] Attribute subspaces for zero-shot learning
    Zhou, Lei
    Liu, Yang
    Bai, Xiao
    Li, Na
    Yu, Xiaohan
    Zhou, Jun
    Hancock, Edwin R.
    PATTERN RECOGNITION, 2023, 144