Multiplicity results near the principal eigenvalue for boundary-value problems with periodic nonlinearity

被引:5
作者
Canada, A. [1 ]
机构
[1] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
关键词
ordinary boundary-value problems; Dirichlet conditions; near resonance; periodic nonlinearities; multiplicity;
D O I
10.1002/mana.200410477
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let us consider the boundary-value problem -u"(x) - lambda u(x) + g(u(x)) = asinx + (h) over tilde (x), x is an element of [0, pi], u(0) = u(pi) = 0, where g : R -> R is a continuous and T-periodic function with zero mean value, not identically zero, (lambda, a) is an element of R-2 and (h) over tilde is an element of C[0, pi] with integral(pi)(0) (h) over tilde (x)sinxdx = 0. If lambda(1) denotes the first eigenvalue of the associated eigenvalue problem, we prove that if (lambda, a) -> (lambda(1), 0), then the number of solutions increases to infinity. The proof combines Liapunov-Schmidt reduction together with a careful analysis of the oscillatory behavior of the bifurcation equation.
引用
收藏
页码:235 / 241
页数:7
相关论文
共 20 条
[1]   ELLIPTIC EQUATIONS WITH NON-INVERTIBLE FREDHOLM LINEAR PART AND BOUNDED NONLINEARITIES [J].
AMANN, H ;
AMBROSETTI, A ;
MANCINI, G .
MATHEMATISCHE ZEITSCHRIFT, 1978, 158 (02) :179-194
[2]   EXISTENCE AND MULTIPLICITY RESULTS FOR NON-LINEAR ELLIPTIC PROBLEMS WITH LINEAR PART AT RESONANCE - CASE OF SIMPLE EIGENVALUE [J].
AMBROSETTI, A ;
MANCINI, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 28 (02) :220-245
[3]  
Arcoya D, 2001, PROG NONLIN, V43, P189
[4]   Resonant nonlinear boundary value problems with almost periodic nonlinearity [J].
Cañada, A ;
Ruiz, D .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2002, 9 (02) :193-204
[5]  
CANADA A, 2003, DIFFER INTEGRAL EQU, V16, P499
[6]  
CANADA A, 1997, DIFFERENTIAL INTEGRA, V10, P1113
[7]   BIFURCATION FROM INFINITY AND MULTIPLE SOLUTIONS FOR SOME DIRICHLET PROBLEMS WITH UNBOUNDED NONLINEARITIES [J].
CHIAPPINELLI, R ;
MAWHIN, J ;
NUGARI, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (12) :1099-1112
[8]  
CHIAPPINELLI R, 1993, DIFFERENTIAL INTEGRA, V6, P757
[9]   ON THE USE OF ASYMPTOTICS IN NON-LINEAR BOUNDARY-VALUE-PROBLEMS [J].
DANCER, EN .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 131 :167-185
[10]  
Fucik S., 1980, SOLVABILITY NONLINEA