On ramification in the compositum of function fields

被引:8
作者
Anbar, Nurdagul [1 ]
Stichtenoth, Henning [1 ]
Tutdere, Seher [1 ]
机构
[1] Sabanci Univ, MDBF, TR-34956 Istanbul, Turkey
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2009年 / 40卷 / 04期
关键词
function fields; ramification; Abhyankar's Lemma;
D O I
10.1007/s00574-009-0026-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is twofold: Firstly, we generalize well-known formulas for ramification and different exponents in cycle extensions of function fields over a field K (due to H. Hasse) to extensions E = F (y), where y satisfies an equation of f (y) = u . g (y) with polynomials f (y), g (y) is an element of K [y] and u is an element of F. This result depends essentially on Abhyankar's Lemma which gives information about ramification in a compositum E = E1E2 of finite extensions E-1, E-2 over a function field F. Abhyankar's Lemma does not hold if both extensions E-1/F and E-2/F are widly ramified. Our second objective is a generalization of Abhyankar's Lemma E-1/F and E-2/F are cyclic extensions of degree p = char (K). This result may be useful for the study of wild towers of function fields over finite fields.
引用
收藏
页码:539 / 552
页数:14
相关论文
共 8 条
[1]  
BASSA A, 2007, THESIS U DUISBURG ES
[2]   A NEW TOWER OVER CUBIC FINITE FIELDS [J].
Bassa, Alp ;
Garcia, Arnaldo ;
Stichtenoth, Henning .
MOSCOW MATHEMATICAL JOURNAL, 2008, 8 (03) :401-418
[3]   SOME ARTIN-SCHREIER TOWERS ARE EASY [J].
Garcia, Arnaldo ;
Stichtenoth, Henning .
MOSCOW MATHEMATICAL JOURNAL, 2005, 5 (04) :767-774
[4]  
Hasse H, 1934, J REINE ANGEW MATH, V170, P4
[5]  
Niederreiter H., 2001, LONDON MATH SOC LECT, V285
[6]  
Stichtenoth H, 2009, GRAD TEXTS MATH, V254, P1
[7]  
Villa Salvador G., 2006, MATH THEORY
[8]  
WULFTANGE J, 2002, THESIS U ESSEN