Deep learning-based point-scanning super-resolution imaging

被引:108
作者
Fang, Linjing [1 ]
Monroe, Fred [2 ]
Novak, Sammy Weiser [1 ]
Kirk, Lyndsey [3 ]
Schiavon, Cara R. [1 ]
Yu, Seungyoon B. [4 ]
Zhang, Tong [1 ]
Wu, Melissa [1 ]
Kastner, Kyle [5 ]
Latif, Alaa Abdel [6 ]
Lin, Zijun [6 ]
Shaw, Andrew [6 ]
Kubota, Yoshiyuki [7 ]
Mendenhall, John [3 ]
Zhang, Zhao [8 ]
Pekkurnaz, Gulcin [4 ]
Harris, Kristen [3 ]
Howard, Jeremy [6 ]
Manor, Uri [1 ]
机构
[1] Salk Inst Biol Studies, Waitt Adv Biophoton Ctr, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA
[2] Wicklow AI Med Res Initiat, San Francisco, CA USA
[3] Univ Texas Austin, Ctr Learning & Memory, Inst Neurosci, Dept Neurosci, Austin, TX 78712 USA
[4] Univ Calif San Diego, Neurobiol Sect, Div Biol Sci, La Jolla, CA 92093 USA
[5] Univ Montreal, Montreal Inst Learning Algorithms, Montreal, PQ, Canada
[6] Univ San Francisco, Data Inst, Fast AI, San Francisco, CA USA
[7] Natl Inst Physiol Sci, Div Cerebral Circuitry, Okazaki, Aichi, Japan
[8] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78712 USA
基金
美国国家科学基金会; 日本学术振兴会; 美国国家卫生研究院;
关键词
RESTORATION; MICROSCOPY;
D O I
10.1038/s41592-021-01080-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Point-scanning imaging systems are among the most widely used tools for high-resolution cellular and tissue imaging, benefiting from arbitrarily defined pixel sizes. The resolution, speed, sample preservation and signal-to-noise ratio (SNR) of point-scanning systems are difficult to optimize simultaneously. We show these limitations can be mitigated via the use of deep learning-based supersampling of undersampled images acquired on a point-scanning system, which we term point-scanning super-resolution (PSSR) imaging. We designed a 'crappifier' that computationally degrades high SNR, high-pixel resolution ground truth images to simulate low SNR, low-resolution counterparts for training PSSR models that can restore real-world undersampled images. For high spatiotemporal resolution fluorescence time-lapse data, we developed a 'multi-frame' PSSR approach that uses information in adjacent frames to improve model predictions. PSSR facilitates point-scanning image acquisition with otherwise unattainable resolution, speed and sensitivity. All the training data, models and code for PSSR are publicly available at 3DEM.org.
引用
收藏
页码:406 / +
页数:27
相关论文
共 57 条
[41]  
Royer L.A, 2020, IMAGE DECONVOLUTION
[42]   Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network [J].
Shi, Wenzhe ;
Caballero, Jose ;
Huszar, Ferenc ;
Totz, Johannes ;
Aitken, Andrew P. ;
Bishop, Rob ;
Rueckert, Daniel ;
Wang, Zehan .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1874-1883
[43]   Learning from Simulated and Unsupervised Images through Adversarial Training [J].
Shrivastava, Ashish ;
Pfister, Tomas ;
Tuzel, Oncel ;
Susskind, Josh ;
Wang, Wenda ;
Webb, Russ .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2242-2251
[44]  
Smith L. N., 2018, ARXIV
[45]   Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates [J].
Smith, Leslie N. ;
Topin, Nicholay .
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS, 2019, 11006
[46]   Cyclical Learning Rates for Training Neural Networks [J].
Smith, Leslie N. .
2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, :464-472
[47]  
Sreehari S, 2017, P IEEE C COMP VIS PA, P88
[48]  
Sugawara Y, 2018, IEEE IMAGE PROC, P66, DOI 10.1109/ICIP.2018.8451141
[49]   Synaptic circuits and their variations within different columns in the visual system of Drosophila [J].
Takemura, Shin-ya ;
Xu, C. Shan ;
Lu, Zhiyuan ;
Rivlin, Patricia K. ;
Parag, Toufiq ;
Olbris, Donald J. ;
Plaza, Stephen ;
Zhao, Ting ;
Katz, William T. ;
Umayam, Lowell ;
Weaver, Charlotte ;
Hess, Harald F. ;
Horne, Jane Anne ;
Nunez-Iglesias, Juan ;
Aniceto, Roxanne ;
Chang, Lei-Ann ;
Lauchie, Shirley ;
Nasca, Ashley ;
Ogundeyi, Omotara ;
Sigmund, Christopher ;
Takemura, Satoko ;
Tran, Julie ;
Langille, Carlie ;
Le Lacheur, Kelsey ;
McLin, Sari ;
Shinomiya, Aya ;
Chklovskii, Dmitri B. ;
Meinertzhagen, Ian A. ;
Scheffer, Louis K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (44) :13711-13716
[50]   Artificial intelligence for microscopy: what you should know [J].
von Chamier, Lucas ;
Laine, Romain F. ;
Henriques, Ricardo .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2019, 47 :1029-1040