Deep learning-based point-scanning super-resolution imaging

被引:108
作者
Fang, Linjing [1 ]
Monroe, Fred [2 ]
Novak, Sammy Weiser [1 ]
Kirk, Lyndsey [3 ]
Schiavon, Cara R. [1 ]
Yu, Seungyoon B. [4 ]
Zhang, Tong [1 ]
Wu, Melissa [1 ]
Kastner, Kyle [5 ]
Latif, Alaa Abdel [6 ]
Lin, Zijun [6 ]
Shaw, Andrew [6 ]
Kubota, Yoshiyuki [7 ]
Mendenhall, John [3 ]
Zhang, Zhao [8 ]
Pekkurnaz, Gulcin [4 ]
Harris, Kristen [3 ]
Howard, Jeremy [6 ]
Manor, Uri [1 ]
机构
[1] Salk Inst Biol Studies, Waitt Adv Biophoton Ctr, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA
[2] Wicklow AI Med Res Initiat, San Francisco, CA USA
[3] Univ Texas Austin, Ctr Learning & Memory, Inst Neurosci, Dept Neurosci, Austin, TX 78712 USA
[4] Univ Calif San Diego, Neurobiol Sect, Div Biol Sci, La Jolla, CA 92093 USA
[5] Univ Montreal, Montreal Inst Learning Algorithms, Montreal, PQ, Canada
[6] Univ San Francisco, Data Inst, Fast AI, San Francisco, CA USA
[7] Natl Inst Physiol Sci, Div Cerebral Circuitry, Okazaki, Aichi, Japan
[8] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78712 USA
基金
美国国家科学基金会; 日本学术振兴会; 美国国家卫生研究院;
关键词
RESTORATION; MICROSCOPY;
D O I
10.1038/s41592-021-01080-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Point-scanning imaging systems are among the most widely used tools for high-resolution cellular and tissue imaging, benefiting from arbitrarily defined pixel sizes. The resolution, speed, sample preservation and signal-to-noise ratio (SNR) of point-scanning systems are difficult to optimize simultaneously. We show these limitations can be mitigated via the use of deep learning-based supersampling of undersampled images acquired on a point-scanning system, which we term point-scanning super-resolution (PSSR) imaging. We designed a 'crappifier' that computationally degrades high SNR, high-pixel resolution ground truth images to simulate low SNR, low-resolution counterparts for training PSSR models that can restore real-world undersampled images. For high spatiotemporal resolution fluorescence time-lapse data, we developed a 'multi-frame' PSSR approach that uses information in adjacent frames to improve model predictions. PSSR facilitates point-scanning image acquisition with otherwise unattainable resolution, speed and sensitivity. All the training data, models and code for PSSR are publicly available at 3DEM.org.
引用
收藏
页码:406 / +
页数:27
相关论文
共 57 条
[1]  
Aitken A, 2017, CHECKERBOARD ARTIFAC, DOI DOI 10.48550/ARXIV.1707.02937
[2]   Phototoxicity revisited [J].
不详 .
NATURE METHODS, 2018, 15 (10) :751-751
[3]  
[Anonymous], 2017, ICLR
[4]   High-resolution restoration of 3D structures from widefield images with extreme low signal-to-noise-ratio [J].
Arigovindan, Muthuvel ;
Fung, Jennifer C. ;
Elnatan, Daniel ;
Mennella, Vito ;
Chan, Yee-Hung Mark ;
Pollard, Michael ;
Branlund, Eric ;
Sedat, John W. ;
Agard, David A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (43) :17344-17349
[5]   On the use of deep learning for computational imaging [J].
Barbastathis, George ;
Ozcan, Aydogan ;
Situ, Guohai .
OPTICA, 2019, 6 (08) :921-943
[6]  
Batson J., 2019, P 36 INT C MACH LEAR, V97, P524
[7]   Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction [J].
Belthangady, Chinmay ;
Royer, Loic A. .
NATURE METHODS, 2019, 16 (12) :1215-1225
[8]  
Buchholz TO, 2019, I S BIOMED IMAGING, P502, DOI [10.1109/ISBI.2019.8759519, 10.1109/isbi.2019.8759519]
[9]   Content-aware image restoration for electron microscopy [J].
Buchholz, Tim-Oliver ;
Krull, Alexander ;
Shahidi, Reza ;
Pigino, Gaia ;
Jekely, Gaspar ;
Jug, Florian .
THREE-DIMENSIONAL ELECTRON MICROSCOPY, 2019, 152 :277-289
[10]   Fast live simultaneous multiwavelength four-dimensional optical microscopy [J].
Carlton, Peter M. ;
Boulanger, Jerome ;
Kervrann, Charles ;
Sibarita, Jean-Baptiste ;
Salamero, Jean ;
Gordon-Messer, Susannah ;
Bressan, Debra ;
Haber, James E. ;
Haase, Sebastian ;
Shao, Lin ;
Winoto, Lukman ;
Matsuda, Atsushi ;
Kner, Peter ;
Uzawa, Satoru ;
Gustafsson, Mats ;
Kam, Zvi ;
Agard, David A. ;
Sedat, John W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (37) :16016-16022