Predictive Analysis and Prognostic Approach of Diabetes Prediction with Machine Learning Techniques

被引:4
|
作者
Omana, J. [1 ]
Moorthi, M. [2 ]
机构
[1] Anna Univ, Prathyusha Engn Coll, Dept Comp Sci & Engn, Thiruvallur, India
[2] Saveetha Engn Coll, Dept Elect & Commun Engn, Chennai, Tamil Nadu, India
关键词
Prognostic modelling; Prediction; Automated modelling; Type 2 diabetes mellitus; Sparse data handling; Approximation; Machine learning algorithm; CLASSIFICATION; DISEASE;
D O I
10.1007/s11277-021-08274-w
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Medical experts indulge in numerous strategies for efficient and predictive measures to model the health status of patients and formulate the patterns that are formed in test results. Most patients would dream of their betterments of their health conditions and thus preventing the progression of any disease. When diabetics is considered in the model, or highly intervening methodology would be required for pre-diabetic individuals. Hidden Markov models have been modified into variant models to derive predictions that accurately produce expected results by investigating patterns of clinical observations from a detailed sample of patient's dataset. There are yet unanswered and concerning challenges to derive an absolute model for predicting diabetes. The datasets from which the patterns are derived from, still holds levels of in completeness, irregularity and obvious clinical interventions during the diagnosis. The Electronic Medical Records are not furnished with all requisite information in all conditions and scenarios. Due to these irregularities prediction has become highly challenging and there is increase in misclassification rate. Newton's Divide Difference Method (NDDM) is a conventional model for filling the irregularity in electronic datasets through divided differences. The classical approach considers a polynomial approximation approach, thus leading to Runge Phenomenon. If the interval between data fields id higher, severity of finding the irregularities is even higher. By using this type of technique it helps in improving the accuracy thereby bringing in high level prediction without any error and misclassification. In this technique proposed, a novel approximation technique is implemented using the Euclidean distance parameter over the NDDM approximation to predict the outcomes or risk of Type 2 Diabetes Mellitus among patients. Real world entities in CPCSSN are considered for this study and proposed method is tested. The proposed method filled the irregularity in the data components of EMR with better approximations and the quality of prediction has improved significantly.
引用
收藏
页码:465 / 478
页数:14
相关论文
共 50 条
  • [31] Comparative Analysis of Diabetes Prediction Using Machine Learning
    David, S. Alex
    Varsha, V.
    Ravali, Y.
    Saranya, N. Naga Amrutha
    SOFT COMPUTING FOR SECURITY APPLICATIONS, ICSCS 2022, 2023, 1428 : 155 - 163
  • [32] An ensemble learning approach for diabetes prediction using boosting techniques
    Ganie, Shahid Mohammad
    Pramanik, Pijush Kanti Dutta
    Malik, Majid Bashir
    Mallik, Saurav
    Qin, Hong
    FRONTIERS IN GENETICS, 2023, 14
  • [33] Prediction and diagnosis of future diabetes risk: a machine learning approach
    Roshan Birjais
    Ashish Kumar Mourya
    Ritu Chauhan
    Harleen Kaur
    SN Applied Sciences, 2019, 1
  • [34] Prediction of complications of type 2 Diabetes: A Machine learning approach
    Nicolucci, Antonio
    Romeo, Luca
    Bernardini, Michele
    Vespasiani, Marco
    Rossi, Maria Chiara
    Petrelli, Massimiliano
    Ceriello, Antonio
    Di Bartolo, Paolo
    Frontoni, Emanuele
    Vespasiani, Giacomo
    DIABETES RESEARCH AND CLINICAL PRACTICE, 2022, 190
  • [35] Optimized Machine Learning Approach for the Prediction of Diabetes-Mellitus
    Challa, Manoj
    Chinnaiyan, R.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 321 - 328
  • [36] Prediction and diagnosis of future diabetes risk: a machine learning approach
    Birjais, Roshan
    Mourya, Ashish Kumar
    Chauhan, Ritu
    Kaur, Harleen
    SN APPLIED SCIENCES, 2019, 1 (09):
  • [37] ENHANCING HEALTHCARE EXPENDITURE PREDICTION IN DIABETES: A MACHINE LEARNING APPROACH
    Kim, H. S.
    Fu, Y. H.
    Huang, P. L.
    Zafari, Z.
    VALUE IN HEALTH, 2024, 27 (12)
  • [38] A Predictive Model for Diabetes Mellitus Using Machine Learning Techniques (A Study in Nigeria)
    Evwiekpaefe, Abraham Eseoghene
    Abdulkadir, Nafisat
    AFRICAN JOURNAL OF INFORMATION SYSTEMS, 2023, 15 (01):
  • [39] Predictive Modeling for Diabetes Subtype Classification in India: A Machine Learning Approach
    Venkatesan, Ulagamadesan
    Amutha, Anandakumar
    Anjana, Ranjit Mohan
    Unnikrishnan, Ranjit
    Mappillairaju, Bagavandas
    Mohan, Viswanathan
    JOURNAL OF DIABETOLOGY, 2025, 16 (02)
  • [40] Machine Learning for Diabetes Prediction
    Ahmed, Usman
    Li, Chunxiao
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 16 - 19